ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-23
    Description: Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A V P = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉We use teleseismic receiver functions computed from an ∼35‐day nodal dataset recorded along three profiles in the northern basins of Los Angeles, California, to map the depth and shape of the sediment–basement interface and to identify possible deep fault offsets. The results show the Moho discontinuity, the bottom of the basement, and intermediary sedimentary layers. There are also indications of midcrustal offsets along strike of the Red Hill and Raymond faults. The results are compared with receiver functions from nearby permanent broadband stations and the 1993 Los Angeles Region Seismic Experiment (LARSE) profile. The images show that dense deployments of node‐type sensors can be used to characterize basin structure in a noisy urban environment.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-01
    Description: Extreme weather and the proliferation of impervious areas in urban watersheds increases the frequency of flood events and deepens water quality concerns. Bioretention is a type of green infrastructure practice developed to mitigate these impacts by reducing peak flows, runoff volume, and nutrient loads in stormwater. However, studies have shown inconsistency in the ability of bioretention to manage some pollutants, particularly some forms of nitrogen. Innovative sensor and control technologies are being tested to actively manage urban stormwater, primarily in open water stormwater systems such as wet ponds. Through these cyber-physical controls, it may be possible to optimize storage time and/or soil moisture dynamics within bioretention cells to create more favorable conditions for water quality improvements. A column study testing the influence of active control on bioretention system performance was conducted over a 9-week period. Active control columns were regulated based on either maintaining a specific water level or soil moisture content and were compared to free draining (FD) and internal water storage standards. Actively controlled bioretention columns performed similarly, with the soil moisture-based control showing the best performance with over 86% removal of metals and total suspended solids (TSS) while also exhibiting the highest ammonium removal (43%) and second highest nitrate removal (74%). While all column types showed mostly similar TSS and metal removal trends (median 94 and 98%, respectively), traditionally FD and internal water storage configurations promoted aerobic and anaerobic processes, respectively, which suggests that actively controlled systems have greater potential for targeting both processes. The results suggest that active controls can improve upon standard bioretention designs, but further optimization is required to balance the water quality benefits gained by retention time against storage needs for impending storms.
    Electronic ISSN: 2617-4782
    Topics: Architecture, Civil Engineering, Surveying , Geography , Sociology , Technology
    Published by IWA Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-20
    Description: Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere. © 2018, The Author(s).
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: International Ocean Discovery Program Expedition 368 is the second of two consecutive cruises that form the South China Sea Rifted Margin program. Expeditions 367 and 368 share the common key objectives of testing scientific hypotheses of breakup of the northern South China Sea (SCS) margin and comparing its rifting style and history to other nonvolcanic or magma-poor rifted margins. Four primary sites were selected for the overall program: one in the outer margin high (OMH) and three seaward of the OMH on distinct, margin-parallel basement ridges. These three ridges are informally labeled A, B, and C. They are located within the continent-ocean transition (COT) zone ranging from the OMH to the interpreted steady-state oceanic crust (Ridge C) of the SCS. The main scientific objectives include 1. Determining the nature of the basement within crustal units across the COT of the SCS that are critical to constrain style of rifting, 2. Constraining the time interval from initial crustal extension and plate rupture to the initial generation of igneous ocean crust, 3. Constraining vertical crustal movements during breakup, and 4. Examining the nature of igneous activity from rifting to seafloor spreading. In addition, the sediment cores from the drill sites targeting primarily tectonic and basement objectives will provide information on the Cenozoic regional environmental development of the Southeast Asia margin. Expedition 368 was planned to drill at two primary sites (U1501 and U1503) at the OMH and Ridge C, respectively. However, based on drilling results from Expedition 367, Expedition 368 chose to insert an alternate site on Ridge A (Site U1502). In total, the expedition completed operations at four sites (U1501, U1502, U1504, and U1505). Site U1503, however, was not completed beyond casing to 990 m because of mechanical problems with the drilling equipment that limited the expedition from 25 May 2017 to the end of the expedition to operate with a drill string not longer than 3400 m. New alternate Site U1504 proposed during Expedition 367 met this condition. Site U1505 also met the operational constraints of the 3400 m drill string (total) and was an alternate site for the already drilled Site U1501. At Site U1501, we cored to 697.1 m in 9.4 days, with 78.5% recovery. We also drilled ahead for 433.5 m in Hole U1501D and then logged downhole data from 78.3 to 399.3 m. In 19.3 days at Site U1502, we penetrated 1679.0 m, set 723.7 m of casing and cored a total of 576.3 m with 53.5% recovery, and collected downhole log data from 785.3 to 875.3 m and seismic data through the 10¾ inch casing. At Site U1503, we penetrated 995.1 m, setting 991.5 m of 10¾ inch casing, but no cores were taken. At Site U1504, we took 40 rotary core barrel (RCB) cores over two holes. The cored interval between both holes was 277.3 m with 26.8% recovery. An 88.2 m interval was drilled in Hole U1504B. At Site U1505, we cored 668.0 m with 101.1% recovery. Logging data was collected from 80.1 to 341.2 m. Operations at this site covered 6.1 days. Except for Site U1505, we drilled to acoustic basement, which prior to the expedition, except for Site U1501, had been interpreted to be crystalline basement. A total of 6.65 days were lost due to mechanical breakdown or waiting on spare supplies for repair of drilling equipment. At Site U1501 on the OMH, coring ~45 m into the acoustic basement sampled highly lithified sandstone to conglomerate of presumed Mesozoic age overlain by siliciclastic Eocene pre- to synrift sediments of Oligocene age and topped by primarily carbonaceous postrift sediments of early Miocene to Pleistocene age. Site U1502 on Ridge A was cased to 723.7 m. At this site, we recovered 180 m of hydrothermally altered brecciated basalts comprising sheet and pillow lavas below deep-marine sediments of Oligocene to late Miocene age. Coring was not performed within the upper 380 m (~Pliocene-Pleistocene) at Site U1502. At Site U1503 on Ridge C, 991.5 m of casing was installed in preparation for the planned deep drilling to ~1800 m, but no coring was performed due to mechanical failures, and the site was abandoned without further activity. Coring at Site U1504 on the OMH ~45 km east of Site U1501 recovered metamorphic schist to gneiss (greenschist facies) below late Eocene (?) carbonate rocks (partly reef debris) and early Miocene to Pleistocene sediments. At Site U1505, we cored to 480.15 m through Pleistocene to late Oligocene mainly carbonaceous ooze followed at depth by early Oligocene to late Eocene siliciclastic sediments. Efforts were made at every drill site to correlate the core with the seismic data and seismic stratigraphic unconformities interpreted within the Eocene to Plio-Pleistocene sedimentary sequence prior to drilling. The predrilling interpretation of ages of these unconformities was in general confirmed by drilling results. As a result of the constraints on the length of drill string that could be deployed during the later part of Expedition 368, the secondary expedition objectives addressing the environmental history of the SCS and Southeast Asia received more focus than planned because these sites are located in shallower water depths and required less penetration depth. This forced change in emphasis, however, was without fatal consequences for the primary tectonic objectives. The two expeditions together provided solid evidence for a process of breakup that included vigorous synrift magmatism as opposed to the often-favored interpretation of the SCS margin as a magma-starved margin.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-14
    Description: Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50 km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift.
    Description: Published
    Description: 1766–1774
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Low velocities in the Gulf upper mantle are interpreted as partial melting ; Partial melting under the Guaymas Basin and off axis of the other rift basins ; Lower crustal flow assisted by heat source in N Gulf near mantle upwelling ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-14
    Description: Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broadband stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ∼28oN which extends east–south–eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California.We also observe a high-velocity anomaly at 50-km depth extending down to ∼130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.
    Description: Published
    Description: 1861-1877
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: surface waves ; seismic tomography ; dynamics of lithosphere and mantle ; crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...