ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 1
    Publication Date: 2016-05-10
    Description: A rapid and broadband (1 h, 1 〈 f 〈 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-18
    Description: Climate change is becoming an existential threat with warming in excess of 2°C within the next three decades and 4°C to 6°C within the next several decades. Warming of such magnitudes will expose as many as 75% of the world’s population to deadly heat stress in addition to disrupting the climate and weather worldwide. Climate change is an urgent problem requiring urgent solutions. This report lays out urgent and practical solutions that are ready for implementation now, will deliver benefits in the next few critical decades, and places the world on a path to achieving the long-term targets of the Paris Agreement and near-term sustainable development goals. The approach consists of four building blocks and 3 levers to implement ten scalable solutions described in this report by a team of climate scientists, policy makers, social and behavioral scientists, political scientists, legal experts, diplomats, and military experts from around the world. These solutions will enable society to decarbonize the global energy system by 2050 through efficiency and renewables, drastically reduce short-lived climate pollutants, and stabilize the climate well below 2°C both in the near term (before 2050) and in the long term (post 2050). It will also reduce premature mortalities by tens of millions by 2050. As an insurance against policy lapses, mitigation delays and faster than projected climate changes, the solutions include an Atmospheric Carbon Extraction lever to remove CO2 from the air. The amount of CO2 that must be removed ranges from negligible, if the emissions of CO2 from the energy system and SLCPs start to decrease by 2020 and carbon neutrality is achieved by 2050, to a staggering one trillion tons if the carbon lever is not pulled and emissions of climate pollutants continue to increase until 2030.
    Language: English
    Type: info:eu-repo/semantics/report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...