ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-09
    Description: The chemical compositions of uraninites from five major deposit types (tabular, unconformity, vein, metasomatic, and igneous), measured by electron microprobe and LA-ICP-MS, underline the extreme chemical variation of natural uraninite, due to different formation conditions prevailing at each deposit type. Apart from the major elements always analyzed in uraninite (U, Th, Y, REE, Pb, as well as Si, Ca, and Fe), several additional elements are present in uraninite to a significant degree: Mn (overall median value of 6088 ppm), V (4528 ppm), Na (2365 ppm), As (2251 ppm), W (1811 ppm), Mg (441 ppm), Sb (286 ppm), Sr (261 ppm), Ti (235 ppm), Mo (133 ppm), Bi (125 ppm), and Ba (118 ppm). Uraninites from different deposit types have distinct chemical compositions: tabular-type uraninites have the lowest Th, Y, and REE and the highest trace elements, in particular Mg, Mn, and V; sandstone-hosted unconformity-related uraninites have the lowest Y and the highest Fe, Na, Cu, Ni, and Ni; basement-hosted unconformity-related uraninites have the lowest Ca and Fe and the highest Ti, Ni, and W; metasomatism-related uraninites have the lowest Y and the highest Th and Si; and igneous uraninites have the lowest trace elements and the highest Th, Y, REE, Zr, and Hf. The vein-type uraninites have the most variable chemical compositions. In addition to the REE spectra, with only the igneous uraninites displaying a negative Eu anomaly, the chemical compositions of uraninites can be used with high confidence as provenance indicators.
    Print ISSN: 0008-4476
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-16
    Description: The 2.67 Ga Hackett River volcanogenic massive sulfide (VMS) deposits located in the northeastern Slave province, Nunavut, Canada, are among the largest undeveloped massive sulfide resources in Canada and are silver rich compared to other such deposits of similar age, with Ag grades up to 3,000 g/t. The deposits are hosted by the Ignerit Formation of the felsic to intermediate calc-alkaline Hackett River Group metavolcanic rocks that are part of the province-wide supracrustal Yellowknife Supergroup. One of the most economically significant of the Hackett River deposits is the Hackett River Main zone (Main zone), which consists of two parts: a stratigraphically lower chalcopyrite-rich stringer zone and an upper massive to semimassive polymetallic sulfide lens. The mineralization is subdivided into five types based on mineralogy, textures, and approximate stratigraphic position: (1) disseminated footwall sulfides, (2) copper-rich stringer sulfides, (3) pyrite-poor sphalerite-pyrrhotite-chalcopyrite mineralization at the top of the stringer zone, (4) mineralization in calc-silicate–altered calcareous tuff units, and (5) sphalerite-pyrite massive sulfide. In type 1 mineralization, disseminated pyrite, pyrrhotite, and sphalerite contain negligible Ag and in type 2, Bi-Ag-(Pb) sulfides, Ag-Bi-Se–enriched galena and chalcopyrite are the dominant Ag hosts. Within type 3, Ag-rich tetrahedrite (freibergite) and galena are the main Ag hosts. In type 4, Ag is hosted in disseminated electrum and freibergite, and within type 5 mineralization, freibergite hosts 99% of the Ag. Overall within the Main zone, Ag-rich freibergite contains 79.4% of the Ag, whereas chalcopyrite hosts 6.3% and galena contains 1.8%. Trace minerals such as electrum host the remainder of the Ag, and these have a limited spatial distribution. Zone refining is the most important control on the distribution of Ag within the Main zone and the principal controls on Ag residence are mineralizing fluid temperature, deposit-scale relative redox conditions, sulfidation state, location of the mineralization relative to the hydrothermal conduit, and the ratio of Bi to Sb in the mineralizing fluid available for coupled substitution. Within the freibergite and chalcopyrite, Ag directly substitutes for Cu and replaces Pb in galena by coupled substitution with Bi and, to a lesser extent, Sb. Lower temperatures 〈ca. 250°C and more oxidizing conditions favored partitioning of Ag into freibergite and less oxidizing conditions favored galena as a host. At higher temperatures, 〉ca. 250°C, the most reducing conditions favored incorporation in Ag-Bi-rich galena (plus Se) and Bi-bearing sulfides or Ag-rich chalcopyrite under lesser reducing conditions.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-27
    Description: The Izok Lake Zn–Cu–Pb–Ag volcanogenic massive sulphide (VMS) deposit in the Arctic region of Canada is one of the largest undeveloped Zn–Cu VMS resources in North America. In 2009, the Geological Survey of Canada initiated a detailed glacial dispersal study of the deposit focused on documenting its associated indicator mineral and till geochemical signatures. Glacial dispersal from the deposit is fan-shaped and was formed by an older SW ice flow and younger NW ice flow phases. Till samples contain chalcopyrite, sphalerite, galena, and pyrite up to 1.3 km down-ice and gahnite at least 40 km down-ice. Gahnite (ZnAl 2 O 4 ) is an ideal indicator mineral in till because of its visually distinctive bluish green colour combined with its high specific gravity (4–4.6) for recovery using density-based separation methods, moderate hardness (physical durability during glacial transport), chemical stability in oxidizing surficial environments (resistance to post-glacial weathering), and its occurrence in highly metamorphosed VMS deposits such as Izok Lake. Most gahnite grains in till down-ice are 0.25–0.5 mm in size. Coarser gahnite (0.5–2.0 mm) occurs only in till proximal to the deposit (〈3 km down-ice) and thus is an indicator of proximity to a gahnite-bearing bedrock source. Ore (Cu, Pb, Zn, Ag) and pathfinder element (As, Cd, Bi, Hg, In, Sb, Sb, Tl) contents in the 〈0.063 mm fraction of till reflect glacial dispersal up to a maximum of 6 km down-ice. A 15–20 km till indicator mineral sample spacing is sufficient to detect a gahnite glacial dispersal train such as that from the Izok Lake VMS deposit.
    Print ISSN: 1467-7873
    Electronic ISSN: 1467-7873
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-07
    Description: ABSTRACT Long-term precipitation series are critical for understanding emerging changes to the hydrological cycle. To this end we construct a homogenized Island of Ireland Precipitation (IIP) network comprising 25 stations and a composite series covering the period 1850–2010, providing the second-longest regional precipitation archive in the British-Irish Isles. We expand the existing catalogue of long-term precipitation records for the island by recovering archived data for an additional eight stations. Following bridging and updating of stations HOMogenisation softwarE in R (HOMER) homogenization software is used to detect breaks using pairwise and joint detection. A total of 25 breakpoints are detected across 14 stations, and the majority (20) are corroborated by metadata. Assessment of variability and change in homogenized and extended precipitation records reveal positive (winter) and negative (summer) trends. Trends in records covering the typical period of digitization (1941 onwards) are not always representative of longer records. Furthermore, trends in post-homogenization series change magnitude and even direction at some stations. While cautionary flags are raised for some series, confidence in the derived network is high given attention paid to metadata, coherence of behaviour across the network and consistency of findings with other long-term climatic series such as England and Wales precipitation. As far as we are aware, this work represents the first application of HOMER to a long-term precipitation network and bodes well for use in other regions. It is expected that the homogenized IIP network will find wider utility in benchmarking and supporting climate services across the Island of Ireland, a sentinel location in the North Atlantic.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Signaling by the ubiquitously expressed tumor necrosis factor receptor 1 (TNFR1) after ligand binding plays an essential role in determining whether cells exhibit survival or death. TNFR1 forms distinct signaling complexes that initiate gene expression programs downstream of the transcriptional regulators NFB and AP-1 and promote different functional outcomes, such as inflammation, apoptosis, and necroptosis. Here, we investigated the ways in which TNFR1 was organized at the plasma membrane at the nanoscale level to elicit different signaling outcomes. We confirmed that TNFR1 forms preassembled clusters at the plasma membrane of adherent cells in the absence of ligand. After trimeric TNFα binding, TNFR1 clusters underwent a conformational change, which promoted lateral mobility, their association with the kinase MEKK1, and activation of the JNK/p38/NFB pathway. These phenotypes required a minimum of two TNFR1-TNFα contact sites; fewer binding sites resulted in activation of NFB but not JNK and p38. These data suggest that distinct modes of TNFR1 signaling depend on nanoscale changes in receptor organization.〈/p〉
    Print ISSN: 1945-0877
    Electronic ISSN: 1937-9145
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-03
    Description: The Howard’s Pass district (HPD) comprises 14 Zn-Pb sedimentary exhalative (SEDEX) deposits and is located within the Selwyn basin, Yukon, Canada. Although the HPD is renowned for its large accumulation of base-metal sulfides, in places the Late Ordovician to Early Silurian host rocks also contain abundant carbonate-bearing fluorapatite (CBFA). This mineral is present stratigraphically below, within, and above the SEDEX deposits and occurs as fine-grained layers that are interbedded with cherty carbonaceous mudstone. Electron probe microanalysis and laser ablation-inductively coupled plasma-mass spectrometric analysis reveal that mineral compositions and rare earth element-yttrium (REE-Y) systematics, respectively, are remarkably similar throughout the stratigraphic succession. North American Shale Composite (NASC)-normalized La/Sm and La/Yb ratios indicate that the original REE compositions in CBFA have undergone only minor compositional modification subsequent to deposition. Uniformly negative Ce anomalies indicate that the mineral formed in analogous manner to modern and ancient sedimentary phosphorites under suboxic bottom-water conditions. Europium anomalies are mostly absent, indicating that reduced, slightly acidic high-temperature hydrothermal fluids were not a major source of REE-Y to CBFA. The chemical homogeneity of the mineral irrespective of its stratigraphic position indicates that a common process was responsible for its deposition within the sedimentary rocks of the HPD. On the basis of the similarity of the REE patterns to modern and ancient phosphorites, and the absence of positive Eu anomalies, we conclude that the CBFA is of hydrogenous origin, and not hydrothermal as suggested by previous workers. As such, phosphorite formation in the HPD is casually related to SEDEX Zn-Pb deposit formation.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-31
    Description: The Lemarchant deposit is a Cambrian bimodal felsic Zn-Pb-Cu-Ag-Au volcanogenic massive sulfide (VMS) deposit located in the Central Mobile Belt, Newfoundland, Canada. Despite regional greenschist metamorphism and faulting, primary mineralogy and mineral textures are well preserved. The deposit is a type example of a precious metal-enriched VMS deposit in the Appalachians. Mineralization consists of a stratiform massive sulfide zone that lies at the contact between a rhyolitic footwall and a basaltic hanging wall. A stringer sulfide zone that is hosted in footwall rhyolite breccia underlies the massive sulfide lens. The stratiform sulfide zone contains massive baryte that is heterogeneously replaced by sphalerite and pyrite, lesser galena, and trace chalcopyrite. The stringer zone contains chalcopyrite, pyrite, and lesser sphalerite and galena. Sphalerite ranges in color from white (low-Fe) to red (high-Fe). The palest sphalerite (〈1 mol.% FeS) occurs in the baryte-rich stratiform zone and is associated with early stage exhalative mineralization, intermediate sulfidation epithermal suite minerals (tetrahedrite, bornite, colusite, Ag-bearing gold, covellite) and sulfide minerals enriched in the epithermal trace element suite (Au, Ag, As, Bi, Co, Cr, In, Mo, Ni, Sb, Sn, Te). Darker sphalerite (4.7–13.6 mol.% FeS) in the stratiform zone overprints early stage mineralization and occurs with chalcopyrite; high-Fe sphalerite is also present in the stringer zone. Early exhalative/epithermal-type VMS mineralization was deposited from low temperature (150–250 °C), oxidized, acidic to near-neutral hydrothermal fluids with high sulfur activity. Early mineralization was likely deposited in relatively shallow water (〈1500 mbsl) that intermittently boiled and precipitated Au in the stratiform zone. Late-stage polymetallic, Cu-rich VMS mineralization was deposited from higher temperature (〉300 °C), less oxidized, near-neutral hydrothermal fluids, likely in deeper water (〉1500 mbsl). Abundant epithermal suite minerals and epithermal trace element suite-enriched sulfides at Lemarchant suggest a direct magmatic contribution to the hydrothermal fluid.
    Print ISSN: 0008-4476
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-11-17
    Print ISSN: 1467-7873
    Electronic ISSN: 1467-7873
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-14
    Description: Prairie Creek is an unmined high grade Zn-Pb-Ag deposit in the southern Mackenzie Mountains of the Northwest Territories, located in a 320 km 2 enclave surrounded by the Nahanni National Park reserve. The upper portion of the quartz-carbonate-sulphide vein mineralization has undergone extensive oxidation, forming high grade zones, rich in smithsonite (ZnCO 3 ) and cerussite (PbCO 3 ). This weathered zone represents a significant resource and a potential component of mine waste material. This study is focused on characterizing the geochemical and mineralogical controls on metal(loid) mobility under mine waste conditions, with particular attention to the metal carbonates as a potential source of trace elements to the environment. Analyses were conducted using a combination of microanalytical techniques (electron microprobe, scanning electron microscopy with automated mineralogy, laser-ablation inductively-coupled mass spectrometry, and synchrotron-based element mapping, micro-X-ray diffraction and micro-X-ray absorbance). The elements of interest included Zn, Pb, Ag, As, Cd, Cu, Hg, Sb and Se. Results include the identification of minor phases previously unknown at Prairie Creek, including cinnabar (HgS), acanthite (Ag 2 S), metal arsenates, and Pb-Sb-oxide. Anglesite (PbSO 4 ) may also be present in greater proportions than recognized by previous work, composing up to 39 weight percent of some samples. Smithsonite is the major host for Zn but this mineral also contains elevated concentrations of Pb, Cd and Cu, while cerussite hosts Zn, Cu and Cd, with concentrations ranging from 6 ppm to upwards of 5.3 weight percent in the two minerals. Variable concentrations of As, Sb, Hg, Ag, and Se are also present in smithsonite and cerussite (listed in approximately decreasing order with concentrations ranging from 〈0.02 to 17 000 ppm). A significant proportion of the trace metal(loid)s may be hosted by other secondary minerals associated with mineralization. Processing will remove significant mineral hosts for these elements from the final tailings, although some may remain depending on whether the smithsonite fraction is left as tailings. Significant Hg and Ag could remain in tailings from cinnabar and acanthite that is trapped within smithsonite grains, which were found to act as a host for up to 53% of the Hg and 79% of the Ag contained in some samples. In a mine waste setting, near-neutral pH will encourage retention of trace metal(loid)s in solids. Regardless, oxidation, dissolution and mobilization is expected to continue in the long term, which may be slowed by saturated conditions, or accelerated by localized flow paths and acidification of isolated, sulphide-rich pore spaces. Supplementary material: Additional description of sampling and analytical methdologies are available at https://doi.org/10.6084/m9.figshare.c.3589562
    Print ISSN: 1467-7873
    Electronic ISSN: 1467-7873
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-15
    Print ISSN: 0361-0128
    Electronic ISSN: 1554-0774
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...