ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress–related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37997 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.
    Keywords: Aerospace Medicine
    Type: JSC-CN-32334 , Annual Aerospace Medical Association Meeting; May 10, 2015 - May 14, 2015; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Astronauts and cosmonauts may experience symptoms of orthostatic intolerance during re-entry, landing, and for several days post-landing following short- and long-duration spaceflight. Presyncopal symptoms have been documented in approximately 20% of short-duration and greater than 60% of long-duration flyers on landing day specifically during 5-10 min of controlled (no countermeasures employed at the time of testing) stand tests or 80 deg head-up tilt tests. Current operational countermeasures to orthostatic intolerance include fluid loading prior to and whole body cooling during re-entry as well as compression garments that are worn during and for up to several days after landing. While both NASA and the Russian space program have utilized compression garments to protect astronauts and cosmonauts traveling on their respective vehicles, a "next-generation" gradient compression garment (GCG) has been developed and tested in collaboration with a commercial partner to support future space flight missions. Unlike previous compression garments used operationally by NASA that provide a single level of compression across only the calves, thighs, and lower abdomen, the GCG provides continuous coverage from the feet to below the pectoral muscles in a gradient fashion (from approximately 55 mm Hg at the feet to approximately 16 mmHg across the abdomen). The efficacy of the GCG has been demonstrated previously after a 14-d bed rest study without other countermeasures and after short-duration Space Shuttle missions. Currently the GCG is being tested during a stand test following long-duration missions (~6 months) to the International Space Station. While results to date have been promising, interactions of the GCG with other space suit components have not been examined. Specifically, it is unknown whether wearing the GCG over NASA's Maximum Absorbency Garment (MAG; absorbent briefs worn for the collection of urine and feces while suited during re-entry and landing) will interfere with the effectiveness of the GCG or conversely whether the GCG will reduce the fluid absorption capabilities of the MAG. Methods: This operational, directed study, will (1) determine whether the effectiveness of the GCG is affected by the MAG with regard to cardiovascular responses to head-up tilt, the standard orthostatic intolerance test employed for astronauts and bed rest subjects; (2) determine whether the effectiveness of the MAG is compromised by the GCG tested by injecting a standard fluid volume (950 ml in 3 separate simulated "urine voids") at a standardized rate (30 ml/sec); and (3) determine whether comfort is affected by wearing the MAG under the GCG using a standardized questionnaire. Results from this study will guide future development and operational use of the GCG and MAG to maximize crew health, safety, and comfort.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38003 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34859 , 2016 Human Research Program Investigator''s Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Visual Impairment /Intracranial Pressure (VIIP) is a top human spaceflight risk for which NASA does not currently have a proven mitigation strategy. Thigh cuffs (Braslets) and lower body negative pressure (LBNP; Chibis) devices have been or are currently being evaluated as a means to reduce VIIP signs and symptoms, but these methods alone may not provide sufficient relief of cephalic venous congestion and VIIP symptoms. Additionally, current LBNP devices are too large and cumbersome for their systematic use as a countermeasure. Therefore, a novel approach is needed that is easy to implement and provides specific relief of symptoms. This investigation will evaluate an impedance threshold device (ITD) as a VIIP countermeasure. The ITD works by providing up to 7 cm H2O (approximately 5 mmHg) resistance to inspiratory air flow, effectively turning the thorax into a vacuum pump upon each inhalation which lowers the intrathoracic pressure (ITP) and facilitates venous return to the heart. The ITD is FDA-approved and was developed to augment venous return to the central circulation and increase cardiac output during cardiopulmonary resuscitation (CPR) and in patients with hypotension. While the effect of ITD on CPR survival outcomes is controversial, the ITD's ability to lower ITP with a concomitant decrease in intracranial pressure (ICP) is well documented. A similar concept that creates negative ITP during exhalation (intrathoracic pressure regulator; ITPR) decreased ICP in 16 of 20 patients with elevated ICP in a hospital pilot study. ITP and central venous pressure (CVP) have been shown to decrease in microgravity however ITP drops more than CVP, indicating an increased transmural CVP. This could explain the paradoxical distention of jugular veins (JV) in microgravity despite lower absolute CVP and also suggests that JV transmural pressure is not dramatically elevated. Use of an ITD may lower JV pressure enough to remove or relieve cephalic venous congestion. During spaceflight experiments with Braslet thigh cuffs and modified (open-glottis) Mueller maneuvers, Braslets alone reduced cardiac preload but only reduced the internal JV (IJV) cross sectional area by 23%. The addition of Mueller maneuvers resulted in an IJV area reduction of 48%. This project will test if ITD essentially applies a Mueller maneuver with added negative ITP in every respiratory cycle, acting to: 1) reduce venous congestion in the neck and 2) potentially lower ICP. The expected mechanism of action is that in microgravity (or an analog) blood is relocated toward the heart from vasculature in the head and neck. Once validated, the ITD would be an exceptionally easy countermeasure to deploy and test on the ISS. Dosage could be altered though 1) duration of application and 2) inspiratory resistance set point. Effects could be additionally enhanced through co-application with other countermeasures such as thigh cuffs or LBNP.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support; Instrumentation and Photography
    Type: JSC-CN-34853 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: INTRODUCTION: This project will provide critical data required to objectively determine how an optimized thigh cuff could be incorporated into the NASA integrated physiological countermeasure suite. This project will determine if thigh cuffs used during simulated spaceflight impact intracranial pressure (ICP), ocular structure and function, and intraocular pressure (IOP) using state of-the-art techniques. Additionally, some of the same methods, hardware, and protocols will be employed in the present investigation to enable direct comparisons to the International Space Station (ISS) "Fluid Shifts" experiment with Chibis-Lower Body Negative Pressure (LBNP). This study will determine the temporal physiological responses of thigh cuff application and removal on ocular and cerebral variables (including invasive ICP) in a microgravity analog. Furthermore, this proposed study will determine tissue pressure distribution applied by thigh cuffs in order to improve comfort, mobility, and efficacy of the countermeasure. Our specific aim is to determine the efficacy of a novel thigh cuff device to mitigate cephalad fluid shifts. We hypothesize that a thigh cuff countermeasure employed in a microgravity analog will temporarily reverse or attenuate ocular and cerebral-volume-pressure variables, approaching normal Earth-based seated posture, the most frequent posture assumed in daily life. In addition, we hypothesize that the magnitude of fluid and pressure redistribution using a thigh cuff countermeasure may require a longer exposure time than that of Chibis-LBNP (using ground-based data from our "Fluid Shifts" project). This project directly addresses Critical Path Roadmap Risks and Questions regarding "Risk of Spaceflight-Induced Intracranial Hypertension/Vision Alterations," and IRP Gap VIIP13: We need to identify preventative and treatment countermeasures to mitigate changes in ocular structure and function and intracranial pressure during spaceflight. METHODS: Noninvasive measures and tissue pressure distributions beneath thigh cuffs The objectives of this study are to: 1) determine the distribution of skin surface pressures beneath the advanced thigh cuff in ten subjects, 2) calibrate the built-in pressure measurement system of the advanced thigh cuff using an industry standard device, and 3) collect subjective feedback and data on the new cuff design to allow for further adjustments prior to invasive studies. A Tekscan Industrial Sensing (I-Scan) system will measure the pressure distribution of the advanced thigh cuff against the skin. In addition, we will measure blood pooling in the thigh and record the circumference of the thigh using Hokanson strain gauge plethysmography. The advanced thigh cuff will be adjusted to obtain a skin contact pressure of 30-50 mmHg as visualized on the Tekscan system. The built-in advanced thigh cuff pressure monitor will be recorded simultaneously to allow direct comparison to the Tekscan measurements. The volunteer will then remove the thigh cuff and remain at rest for five minutes with no legging applied. The thigh cuff will be donned again and pressure measurements will be taken in the same manner for up to 10 repetitions to show reproducibility of pressure after donning. At the conclusion of the study, subjects will be asked to flex their knee, stand, walk, and sit with the thigh cuff activated. During each of these maneuvers the subject will rate their pain/comfort using a modified Borg scale. Effect of thigh cuffs on ICP during simulated microgravity Ommaya reservoir patients will be recruited from the John Wayne Cancer Institute. Ommaya reservoirs provide safe and direct access for the measurement of ICP. Subjects will be instrumented for continuous blood pressure, ECG, and invasive ICP measures. The subjects will be positioned in the upright sitting posture for a 10-minute stabilization period. After the 10-minute stabilization period, imaging measures [ICP, Optical Coherence Tomography, IOP, ocular and vascular ultrasound] will be performed. Following baseline seated measures, the subject will be positioned randomly in the supine, 15deg head-down-tilt, and 15deg head-down-tilt with thigh cuffs and measures repeated. DISCUSSION: Tests to down-select thigh cuff designs will occur in early 2016. Invasive ICP and noninvasive eye imaging tests will begin in spring 2016. Supported by NSBRI through NCC 9-58.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34854 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-38514 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Visual Impairment/Intracranial Pressure (VIIP) is a top human spaceflight risk for which NASA does not currently have a proven mitigation strategy. Thigh cuffs (Braslets) and lower body negative pressure (LBNP; Chibis) devices have been or are currently being evaluated as a means to reduce VIIP signs and symptoms, but these methods alone may not provide sufficient relief of cephalic venous congestion and VIIP symptoms. Additionally, current LBNP devices are too large and cumbersome for their systematic use as a countermeasure. Therefore, a novel approach is needed that is easy to implement and provides specific relief of symptoms. This investigation will evaluate an impedance threshold device (ITD) as a VIIP countermeasure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38015 , NASA Human Research Program Investigators'' Workshop (HRP IWS) 2017; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Long-term space flight decreases visual acuity in more than 50% of astronauts with some reports of post-flight lumbar opening pressures up to 21 mmHg1. Loss of hydrostatic (gravitational) pressures in microgravity shifts blood, spinal fluid and tissue fluids towards the head, probably causing venous congestion and leading to symptoms compatible with chronically increased intracranial pressure (ICP). This is characterized as the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Simulation of gravitational stress by application of Lower Body Negative Pressure (LBNP) is proposed as a means to reduce ICP and reestablish cerebral health in astronauts during long mission stay in space. We hypothesize that 50 mmHg of lower body negative pressure (LBNP) during supine and simulated intracranial hypertension by 15 deg head-down tilt (HDT) counteracts elevations in ICP and internal jugular vein crosssectional area (IJV CSA).
    Keywords: Aerospace Medicine
    Type: JSC-CN-38512 , NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...