ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4028–4047, doi:10.1002/2014JC010425.
    Description: The interactions between waves, tidal currents, and bathymetry near New River Inlet, NC, USA are investigated to understand the effects on the resulting hydrodynamics and sediment transport. A quasi-3-D nearshore community model, NearCoM-TVD, is used in this integrated observational and modeling study. The model is validated with observations of waves and currents at 30 locations, including in a recently dredged navigation channel and a shallower channel, and on the ebb tidal delta, for a range of flow and offshore wave conditions during May 2012. In the channels, model skills for flow velocity and wave height are high. Near the ebb tidal delta, the model reproduces the observed rapid onshore (offshore) decay of wave heights (current velocities). Model results reveal that this sharp transition coincides with the location of the breaker zone over the ebb tidal delta, which is modulated by semidiurnal tides and by wave intensity. The modulation of wave heights is primarily owing to depth changes rather than direct wave-current interaction. The modeled tidally averaged residual flow patterns show that waves play an important role in generating vortices and landward-directed currents near the inlet entrance. Numerical experiments suggest that these flow patterns are associated with the channel-shoal bathymetry near the inlet, similar to the generation of rip currents. Consistent with other inlet studies, model results suggest that tidal currents drive sediment fluxes in the channels, but that sediment fluxes on the ebb tidal delta are driven primarily by waves.
    Description: Funding was provided by the Office of Naval Research (N00014-13-1–0120 and N00014-14-1-0586) and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-12-07
    Keywords: Wave-current interaction ; Sediment transport ; New River ; Morphological evolution ; Tidal inlet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4693-4719, doi:10.1029/2018JC013930.
    Description: We present a new methodology that is able to concurrently resolve free surface wavefield, bottom boundary layer, and sediment transport processes throughout the entire water column. The new model, called SedWaveFoam, is developed by integrating an Eulerian two‐phase model for sediment transport, SedFoam, and a surface wave solver, InterFoam/waves2Foam, in the OpenFOAM framework. SedWaveFoam is validated with a large wave flume data for sheet flow driven by monochromatic nonbreaking waves. To isolate the effect of free surface, SedWaveFoam results are contrasted with one‐dimensional‐vertical SedFoam results, where the latter represents the oscillating water tunnel condition. Results demonstrate that wave‐averaged total sediment fluxes in both models are onshore‐directed; however, this onshore transport is significantly enhanced under surface waves. Onshore‐directed near‐bed sediment flux is driven by a small mean current mainly associated with velocity skewness. More importantly, progressive wave streaming drives onshore transport mostly in suspended load region due to an intrawave sediment flux. Further analysis suggests that the enhanced onshore transport in suspended load is due to a “wave‐stirring” mechanism, which signifies a nonlinear interaction between waves, streaming currents, and sediment suspension. We present some preliminary efforts to parameterize the wave‐stirring mechanism in intrawave sediment transport formulations.
    Description: Office of Naval Research Grant Number: N00014‐16‐1‐2853; NSF Grant Numbers: OCE‐1635151, OCE‐1356855
    Description: 2019-01-05
    Keywords: Sediment transport ; Multiphase flow ; Surface waves ; Boundary layer streaming ; Sheet flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 10 (2017): 4367–4392, doi:10.5194/gmd-10-4367-2017.
    Description: In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
    Description: Julien Chauchat, Tim Nagel, and Cyrille Bonamy are supported by the Region Rhones-Alpes (COOPERA project and Explora Pro grant), the French national programme EC2CO-LEFE MODSED. Zhen Cheng and Tian-Jian Hsu are supported by National Science Foundation (OCE-1537231; OCE-1635151) and Office of Naval Research (N00014-16-1-2853) of USA.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Advances in Water Resources 111 (2018): 435-451, doi:10.1016/j.advwatres.2017.11.019.
    Description: A Reynolds-averaged Euler–Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 〈 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc 〉 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.
    Description: Z. Cheng and T.-J. Hsu were supported by the U.S. Office of Naval Research (N00014- 16-1-2853) and National Science Foundation (OCE- 1537231). J. Chauchat was supported by the Région Rhones-Alpes (COOPERA project and Explora Pro grant) and the French national programme EC2CO-LEFE MODSED. J. Calantoni was supported under base funding to the U.S. Naval Research Laboratory from the U.S. Office of Naval Research. The authors would also like to acknowledge the support from the program on "Fluid- Mediated Particle Transport in Geophysical Flows" at the Kavli Institute for Theoretical Physics, Santa Barbara, USA.
    Keywords: Euler-Lagrange model ; Eddy interaction model ; Turbulent suspension ; Steady sheet flow ; Rouse profile ; Sediment transport rate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Advances in Water Resources 111 (2018): 205-223, doi:10.1016/j.advwatres.2017.11.016.
    Description: A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1–30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.
    Description: This study was supported by National Science Foundation (OCE-1635151; OCE- 958 1537231) and Office of Naval Research (N00014-16-1-2853). J. Chauchat was supported by the Region Rhones-Alpes (COOPERA project and Explora Pro grant) and the French national programme EC2CO-LEFE MODSED. The authors would also like to acknowledge the support from the program on "Fluid-Mediated Particle Transport in Geophysical Flows" at the Kavli Institute for Theoretical Physics, Santa Barbara, USA.
    Keywords: Large eddy simulation ; Sediment transport ; Sheet flow ; Two-phase flow ; Near-bed intermittency
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3081–3105, doi:10.1002/2016JC012334.
    Description: The nonhydrostatic surface and terrain-following coastal model NHWAVE is utilized to simulate a continually forced stratified shear flow in a straight channel, which is a generic problem to test the existing nonhydrostatic coastal models' capability in resolving shear instabilities in the field scale. The resolved shear instabilities in the shear layer has a Reynolds number of about 1.4 × 106, which is comparable to field observed value. Using the standard Smagorinsky closure with a grid size close to the Ozmidov length scale, simulation results show that the resolved energy cascade exceeds 1 order of magnitude and the evolution and turbulent mixing characteristics are predicted well. Two different approaches are used to estimate the turbulent dissipation rate, namely using the resolved turbulent energy spectrum and the parameterized subgrid turbulent dissipation rate, and the predicted results provide the upper and lower bounds that encompass the measured values. Model results show significantly higher turbulence in braids of shear instabilities, which is similar to field observations while both the subgrid turbulent dissipation rate and resolved vorticity field can be used as surrogates for measured high acoustic backscatter signals. Simulation results also reveal that the surface velocity divergence/convergence is an effective identifier for the front of the density current and the shear instabilities. To guide future numerical studies in more realistic domains, an evaluation on the effects of different grid resolutions and subgrid viscosity on the resolved flow field and subgrid dissipation rate are discussed.
    Description: Office of Naval Research Grant Numbers: N00014-15-1-2612 , N00014-16-1-2948; National Science Foundation Grant Numbers: OCE-1334325 , OCE-1232928; Extreme Science and Engineering Discovery Environment (XSEDE) SuperMIC Grant Number: TG-OCE100015
    Description: 2017-10-11
    Keywords: Nonhydrostatic model ; Shear instabilities ; Stratified shear flow ; Surface signatures
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-29
    Print ISSN: 1559-2723
    Electronic ISSN: 1559-2731
    Topics: Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-20
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-30
    Description: In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-07
    Description: In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended upon twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different inter-granular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k-ϵ and a k-ω model. The numerical implementation is first demonstrated by two validation test cases, sedimentation of suspended particles and laminar bed-load. Two applications are then investigated to illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of inter-granular stress and turbulence models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...