ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 1
    Publication Date: 2015-10-22
    Description: Under the 2013 Reform of the European Union's Common Fisheries Policy (CFP), fisheries management aims to ensure that, within a reasonable time frame, the exploitation of marine biological resources restores and maintains populations of harvested stocks above levels that can produce the maximum sustainable yield ( MSY ). The CFP also calls for the implementation of an ecosystem-based approach to fisheries management (EBFM). In this paper, we present the concept of maximum sustainable dead biomass ( MSDB ) and its associated management reference points for fishing mortality and spawning-stock biomass as alternatives to those associated with MSY . The concept of MSDB is illustrated by a dynamic pool production model of a virtual fish stock which takes into account variations in natural mortality ( M ), fishing mortality ( F ), and exploitation pattern. Our approach implies a compensatory mechanism whereby survivors may benefit from compensatory density dependence and is implemented through progressive substitution of M with F for varying rates of total mortality ( Z ). We demonstrate that the reference points for fishing mortality and spawning-stock biomass associated with MSDB are less sensitive to increasing compensation of M with F than those associated with MSY and more sensitive to changes in selection pattern. MSDB -based reference points, which are consistent with maximum stock productivity, are also associated with lower fishing mortality rates and higher stock biomasses than their MSY -based counterparts. Given that selection pattern can be influenced through fishery input measures (e.g. technical gear measures, decisions on areas, and/or times of fishing), whereas variations of M in response to F are not controllable (indeed poorly understood), that the results of many fish stock assessments are imprecise, that maximum stock productivity corresponds to MSDB and that MSY -based reference points may best be considered as limits, we propose that MSDB -based reference points provide a more appropriate basis for management under an EBFM.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-20
    Description: Abundance and biomass of cod, haddock, and whiting in the waters off of the west coast of Scotland (wcoS) have undergone large changes in recent years, most notably a recent decline. These three species contribute a considerable part of Scottish demersal landings from this area and as such it is important to understand why these stocks are behaving the way they are. A number of explanations for the decline have been proposed, including: seal predation, pressure from Nephrops trawls, and fishing pressure more generally. We used an ecosystem model of the wcoS continental shelf (〈200 m depth) to investigate whether these proposed explanations for declining gadoid stocks are feasible. Results suggest that the rise in the grey seal population over recent years has not led to the decline in gadoid stocks; there is insufficient bycatch by the Nephrops fleet to have a large impact on gadoid stocks; however, fishing, as a key driver of the west of Scotland shelf ecosystem, has impacted stocks and by decreasing fishing levels to maximum sustainable yield cod biomass may increase slightly though not returning to previous levels. Although this means we are little further forward in understanding the cause of recent gadoid declines in the area, the development of this model has enabled us to further our knowledge and understanding of aspects of trophic structure and the impacts of fishing on the wcoS.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...