ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-08
    Description: This study investigates the interaction of the quasi-biennial oscillation (QBO) and the El Niño–Southern Oscillation (ENSO) in the troposphere separately for the North Pacific and North Atlantic region. Three 145-yr model simulations with NCAR’s Community Earth System Model Whole Atmosphere Community Climate Model (CESM-WACCM) are analyzed where only natural (no anthropogenic) forcings are considered. These long simulations allow the authors to obtain statistically reliable results from an exceptional large number of cases for each combination of the QBO (westerly and easterly) and ENSO phases (El Niño and La Niña). Two different analysis methods were applied to investigate where nonlinearity might play a role in QBO–ENSO interactions. The analyses reveal that the stratospheric equatorial QBO anomalies extend down to the troposphere over the North Pacific during Northern Hemisphere winter only during La Niña and not during El Niño events. The Aleutian low is deepened during QBO westerly (QBOW) as compared to QBO easterly (QBOE) conditions, and the North Pacific subtropical jet is shifted northward during La Niña. In the North Atlantic, the interaction of QBOW with La Niña conditions (QBOE with El Niño) results in a positive (negative) North Atlantic Oscillation (NAO) pattern. For both regions, nonlinear interactions between the QBO and ENSO might play a role. The results provide the potential to enhance the skill of tropospheric seasonal predictions in the North Atlantic and North Pacific region.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-11
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-15
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-04
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (21). 11,166-11,173.
    Publication Date: 2020-06-29
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (5). pp. 2234-2239.
    Publication Date: 2019-07-16
    Description: We examine the interannual variability of the seasonal mean atmospheric circulation in the Southern Hemisphere during austral winter. The three major modes are identified by rotated EOF (REOF) analysis. As expected, REOF1 is associated with the Southern Annular Mode which is dominated by internal atmospheric dynamics. REOF2 displays a wave train, linked to the western North Pacific monsoon and the Pacific-Japan pattern in East Asia in the same season; REOF3 resembles the Pacific-South American pattern. Externally-forced variability strongly projects on both REOF2 and REOF3 so that, in the ensemble mean, an atmospheric model with prescribed observed sea surface temperature (SST) captures considerable parts of the time evolution of REOF2 (50%) and REOF3 (25%), suggesting a potential predictability for the two modes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-12
    Description: Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth’s regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1–2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Talk] In: 26. IUGG General Assembly, 22.6. - 2.7.2015, Prague, Czech Republic .
    Publication Date: 2015-12-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (4). pp. 1353-1368.
    Publication Date: 2020-08-04
    Description: This study investigates the interaction of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the troposphere separately for the North Pacific and North Atlantic region. Three 145-year model simulations with NCAR’s Community Earth Sytem Model (CESM-WACCM) are analyzed where only natural and no anthropogenic forcings are considered. These long simulations allow us to obtain statistically reliable results from an exceptional large number of cases for each combination of the QBO (westerly and easterly) and ENSO phases (El Niño and La Niña). Two different analysis methods were applied to investigate where nonlinearity might play a role in QBO-ENSO interactions. The analyses reveal that the stratospheric equatorial QBO anomalies extend down to the troposphere over the North Pacific during Northern hemisphere winter only during La Niña and not during El Niño events. The Aleutian low is deepened during QBO westerly (QBOW) as compared to QBO easterly (QBOE) conditions, and the North Pacific subtropical jet is shifted northward during La Niña. In the North Atlantic, the interaction of QBOW with La Niña conditions (QBOE with El Niño) results in a positive (negative) North Atlantic Oscillation (NAO) pattern. For both regions, nonlinear interactions between the QBO and ENSO might play a role. The results provide potential to enhance the skill of tropospheric seasonal predictions in the North Atlantic and North Pacific region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 143 (703B). pp. 706-719.
    Publication Date: 2020-02-06
    Description: The phase and the amplitude of the North Atlantic Oscillation (NAO) are influenced by numerous factors, which include Sea Surface Temperature (SST) anomalies in both the Tropics and extratropics and stratospheric extreme events like Stratospheric Sudden Warmings (SSWs). Analyzing seasonal forecast experiments, which cover the winters from 1979/80–2013/14, with the European Centre for Medium-Range Weather Forecast model, we investigate how these factors affect NAO variability and predictability. Building on the idea that the tropical influence might happen via the stratosphere, special emphasis is placed on the role of major SSWs. Relaxation experiments are performed, where different regions of the atmosphere are relaxed towards ERA-Interim to obtain perfect forecasts in those regions. By comparing experiments with relaxation in the tropical atmosphere, performed with an atmosphere-only model on the one hand and a coupled atmosphere–ocean model version on the other, the importance of extratropical atmosphere–ocean interaction is addressed. Interannual variability of the NAO is best reproduced when perfect knowledge about the NH stratosphere is available together with perfect knowledge of SSTs and sea ice, in which case 64% of the variance of the winter mean NAO is projected to be accounted for with a forecast ensemble of infinite size. The coupled experiment shows a strong bias in the stratospheric polar night jet (PNJ) which might be associated with a drift in the modelled SSTs resembling the North Atlantic cold bias and an underestimation of blockings in the North Atlantic/Europe sector. Consistent with the stronger PNJ, the lowest frequency of major SSWs is found in this experiment. However, after statistically removing the bias, a perfect forecast of the tropical atmosphere and allowing two-way atmosphere–ocean coupling in the extratropics seem to be key ingredients for successful SSW predictions. In combination with SSW occurrence, a clear shift of the predicted NAO towards lower values occurs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...