ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-13
    Description: Monazite laser ablation–split-stream inductively coupled plasma–mass spectrometry (LASS) was used to date monazite in situ in Barrovian-type micaschists of the Moravian zone in the Thaya window, Bohemian Massif. Petrography and garnet zoning combined with pseudosection modelling show that rocks from staurolite–chlorite, staurolite, kyanite and kyanite–sillimanite zones record burial in the S 1 fabric under a moderate geothermal gradient from 4–4·5 kbar and ~530–540°C to 5 kbar and 570°C, 6–7 kbar and 600–640°C, 7·5–8 kbar and 630–650°C, and 8 kbar and 650°C, respectively. In the kyanite and kyanite–sillimanite zones, garnet rim chemistry and local syntectonic replacement of garnet by sillimanite–biotite aggregates point to re-equilibration at 5·5–6 kbar and 630–650°C in the S 2 fabric. Heterogeneously developed retrograde shear zones (S 3 ) are marked by widespread chloritization, but minor chlorite is present in the studied samples. Monazite abundance and size increase with metamorphic grade from 5 µm in the staurolite–chlorite zone to 〉100 µm in the kyanite and kyanite–sillimanite zones. Irrespective of the monazite-forming reaction, this is interpreted as the onset of limited prograde monazite growth at staurolite grade, and continued prograde monazite growth after the kyanite-in reaction, compatible with conditions of about 5·5 kbar and 570°C and 7·5 kbar and 630°C from pseudosection modelling. Monazite is zoned, showing embayments and sharp boundaries between zones, with low Y in the staurolite zone, high-Y cores and low-Y rims in the kyanite zone, and high-Y cores, a low-Y mantle and a high-Y rim in the sillimanite zone. The 207 Pb-corrected 238 U/ 206 Pb ages from three samples range from 344 ± 7 to 330 ± 7 Ma, irrespective of metamorphic grade. The dates from monazite inclusions are interpreted as the ages of the staurolite- and kyanite-in reactions along the prograde path at 340 and 337 ± 7 Ma, respectively. The monazite in the matrix (and some inclusions) is interpreted as dating the prograde crystallization at (340–337) ± 7 Ma within the S 1 fabric, and then being affected by recrystallization at or down to 332 ± 7 Ma in the S 2 and S 3 fabrics. The two groups of data, for 340–337 and 332 Ma, are significantly different when only their in-run uncertainties (±1–3 Myr) are compared and indicate a 9 ± 3 Myr period of monazite (re)crystallization. A systematic increase in heavy rare earth element (HREE) content with decreasing monazite age from 344 to 335 Ma is correlated with growth on the prograde P–T path; the drop in HREE of monazite at 335–328 Ma is assigned to recrystallization. The presence of chlorite even in the least retrogressed samples witnesses limited external fluid availability on the retrograde P–T path. Migration of this fluid was probably responsible for heterogeneous fluid-assisted recrystallization and resetting of original prograde monazite, even where included in garnet, staurolite or kyanite. It is suggested that the rocks passed the chlorite-in reaction on the retrograde path at 332 ± 7 Ma. The timing of burial in the Thaya window, a deformed part of the underthrust Brunia microcontinent, was coeval with exhumation of granulites and migmatites of the Moldanubian orogenic root at c. 340 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-29
    Description: The exhumed Fiordland sector of Zealandia offers a deep-crustal view into the life cycle of a Cordilleran-type orogen from final magmatic construction to extensional orogenic collapse. We integrate U-Pb thermochronologic data from metamorphic zircon and titanite with structural observations from 〉2000 km 2 of central Fiordland to document the tempo and thermal evolution of the lower crust during the tectonic transition from arc construction and crustal thickening to crustal thinning and extensional collapse. Data reveal that garnet granulite facies metamorphism and partial melting in the lower crust partially overlapped with crustal thickening and batholith construction during emplacement of the Western Fiordland Orthogneiss (WFO) from 118 to 115 Ma. Metamorphic zircons in metasedimentary rocks yield 206 Pb/ 238 U (sensitive high-resolution ion microprobe–reverse geometry) dates of 116.3–112.0 Ma. Titanite laser ablation split stream inductively coupled plasma–mass spectrometry chronology from the same rocks yielded complex results, with relict Paleozoic 206 Pb/ 238 U dates preserved at the margins of the WFO. Within extensional shear zones that developed in the thermal aureole of the WFO, titanite dates range from 116.2 to 107.6 Ma and have zirconium-in-titanite temperatures of ~900–750 °C. A minor population of metamorphic zircon rims and titanites in the Doubtful Sound region yield younger dates of 105.6–102.3 Ma with corresponding temperatures of 740–730 °C. Many samples record Cretaceous overdispersed dates with 5–10 m.y. ranges. Core-rim traverses and grain maps show complex chemical and temporal variations that cannot easily be attributed to thermally activated volume diffusion or simple core-rim crystallization. We interpret these Cretaceous titanites not as cooling ages, but rather as recording protracted growth and/or crystallization or recrystallization in response to fluid flow, deformation, and/or metamorphic reactions during the transition from garnet granulite to upper amphibolite facies metamorphism. We propose a thermotectonic model that integrates our results with structural observations. Our data reveal a clear tectonic break at 108–106 Ma that marks a change in processes deep within the arc. Prior to this break, arc construction processes dominated and involved (1) emplacement of mafic to intermediate magmas of the Malaspina and Misty plutons from 118 to 115 Ma, (2) contractional deformation at the roof of the Misty pluton in the Caswell Sound fold-thrust belt from 117 to 113 Ma, and (3) eclogite to garnet granulite facies metamorphism and partial melting over 〉8 m.y. from 116 to 108 Ma. These processes were accompanied by complex patterns of lower crustal flow involving both horizontal and vertical displacements. After this interval, extensional orogenic collapse initiated along upper amphibolite facies shear zones in the Doubtful Sound shear zone at 108–106 Ma. Zircon and titanite growth and/or crystallization or recrystallization at this time clearly link upper amphibolite facies metamorphism to mylonitic fabrics in shear zones. Our observations are significant in that they reveal the persistence of a hot and weak lower crust for ≥15 m.y. following arc magmatism in central Fiordland. We propose that the existence of a thermally weakened lower crust within the Median Batholith was a key factor in controlling the transition from crustal thickening to crustal thinning and extensional orogenic collapse of the Zealandia Cordillera.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-26
    Description: Radial and azimuthal anisotropy in seismic wave speeds have long been observed using surface waves and are believed to be controlled by deformation within the Earth's crust and uppermost mantle. Although radial and azimuthal anisotropy reflect important aspects of anisotropic media, few studies have tried to interpret them jointly. We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. We show that observations of radial anisotropy and the 2 component of azimuthal anisotropy for Rayleigh waves obtained using USArray data in the western United States can be fit well under this assumption. Our inferences occur within the framework of a Bayesian Monte Carlo inversion, which yields a posterior distribution that reflects both variances of and covariances between all model variables, and divide into theoretical and observational results. Principal theoretical results include the following: (1) There are two distinct groups of models (Group 1, Group 2) in the posterior distribution in which the strike angle of anisotropy in the crust (defined by the intersection of the foliation plane with Earth's surface) is approximately orthogonal between the two sets. (2) The Rayleigh wave fast axis directions are orthogonal to the strike angle in the geologically preferred group of models in which anisotropy is strongly non-elliptical. (3) The estimated dip angle may be interpreted in two ways: as a measure of the actual dip of the foliation of anisotropic material within the crust, or as a proxy for another non-geometric variable, most likely a measure of the deviation from hexagonal symmetry of the medium. The principal observational results include the following: (1) Inherent S -wave anisotropy ( ) is fairly homogeneous vertically across the crust, on average, and spatially across the western United States. (2) Averaging over the region of study and in depth, in the crust is approximately 4.1 ± 2 per cent. in the crust is approximately the same in the two groups of models. (3) Dip angles in the two groups of models show similar spatial variability and display geological coherence. (4) Tilting the symmetry axis of an anisotropic medium produces apparent radial and apparent azimuthal anisotropies that are both smaller in amplitude than the inherent anisotropy of the medium, which means that most previous studies have probably underestimated the strength of anisotropy.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: 〈p〉Following the 〈i〉c.〈/i〉 50 Ma India–Kohistan arc–Asia collision, crustal thickening uplifted the Himalaya (Indian Plate), and the Karakoram, Pamir and Tibetan Plateau (Asian Plate). Whereas surface geology of Tibet shows limited Cenozoic metamorphism and deformation, and only localized crustal melting, the Karakoram–Pamir show regional sillimanite- and kyanite-grade metamorphism, and crustal melting resulting in major granitic intrusions (Baltoro granites). U/Th–Pb dating shows that metamorphism along the Hunza Karakoram peaked at 〈i〉c.〈/i〉 83–62 and 44 Ma with intrusion of the Hunza dykes at 52–50 Ma and 35 ± 1.0 Ma, and along the Baltoro Karakoram peaked at 〈i〉c.〈/i〉 28–22 Ma, but continued until 5.4–3.5 Ma (Dassu dome). Widespread crustal melting along the Baltoro Batholith spanned 26.4–13 Ma. A series of thrust sheets and gneiss domes (metamorphic core complexes) record crustal thickening and regional metamorphism in the central and south Pamir from 37 to 20 Ma. At 20 Ma, break-off of the Indian slab caused large-scale exhumation of amphibolite-facies crust from depths of 30–55 km, and caused crustal thickening to jump to the fold-and-thrust belt at the northern edge of the Pamir. Crustal thickening, high-grade metamorphism and melting are certainly continuing at depth today in the India–Asia collision zone.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-30
    Description: Following the c. 50 Ma India–Kohistan arc–Asia collision, crustal thickening uplifted the Himalaya (Indian Plate), and the Karakoram, Pamir and Tibetan Plateau (Asian Plate). Whereas surface geology of Tibet shows limited Cenozoic metamorphism and deformation, and only localized crustal melting, the Karakoram–Pamir show regional sillimanite- and kyanite-grade metamorphism, and crustal melting resulting in major granitic intrusions (Baltoro granites). U/Th–Pb dating shows that metamorphism along the Hunza Karakoram peaked at c. 83–62 and 44 Ma with intrusion of the Hunza dykes at 52–50 Ma and 35 ± 1.0 Ma, and along the Baltoro Karakoram peaked at c. 28–22 Ma, but continued until 5.4–3.5 Ma (Dassu dome). Widespread crustal melting along the Baltoro Batholith spanned 26.4–13 Ma. A series of thrust sheets and gneiss domes (metamorphic core complexes) record crustal thickening and regional metamorphism in the central and south Pamir from 37 to 20 Ma. At 20 Ma, break-off of the Indian slab caused large-scale exhumation of amphibolite-facies crust from depths of 30–55 km, and caused crustal thickening to jump to the fold-and-thrust belt at the northern edge of the Pamir. Crustal thickening, high-grade metamorphism and melting are certainly continuing at depth today in the India–Asia collision zone.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-09
    Description: The onset and evolution of the Dead Sea transform are re-evaluated based on new in situ U-Pb dating and strain analyses of mechanically twinned calcites. Direct dating of 30 syn-faulting calcites from 10 different inactive fault strands of the transform indicates that the oceanic-to-continental plate boundary initiated between 20.8 and 18.5 Ma within an ~10-km-wide distributed deformation zone in southern Israel. Ages from the northern Dead Sea transform (17.1–12.7 Ma) suggest northward propagation and the establishment of a well-developed 〉500-km-long plate-bounding fault in 3 m.y. The dominant horizontal shortening direction recorded in the dated twinned calcites marks the onset of left-lateral motion along the evolving plate boundary. The observed changes in the strain field within individual fault strands cannot be simply explained by local "weakening effects" along strands of the Dead Sea transform or by gradual changes in the Euler pole through time.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-01
    Description: Multimethod geochronology (U-Pb zircon; 40 Ar/ 39 Ar hornblende, biotite, feldspar; apatite fission track) on granitoids, gneisses, and Cenozoic intramontane basin clastics of the Gissar-Alai ranges, South Tian Shan collisional belt, west of the Talas-Fergana fault, elucidates a history of Neoproterozoic magmatism, late Paleozoic magmatism and metamorphism, and Mesozoic–Cenozoic thermal reactivation. Zircon-core and grain-interior U-Pb ages of ca. 2.7–2.4, 2.2–1.7, 1.1–0.85, and 0.85–0.74 Ga tie the early evolution of the Gissar-Alai ranges to that of the Tarim craton. At least part of the Gissar range crystalline basement—the Garm massif—shows U-Pb zircon crystallization ages of ca. 661–552 Ma (median ca. 609 Ma), again suggesting a Tarim craton connection. Tarim collided with the Middle Tian Shan block at ca. 310–305 Ma, completing the protracted formation of the South Tian Shan collisional belt. The massive Gissar range granitoids intruded later (ca. 305–270 Ma), contemporaneous with peak Barrovian-type metamorphism in the Garm massif rocks. Major- and trace-element compositions suggest that the Gissar granitoid melts have continental arc affinity. Zircon Hf and whole-rock Nd values of –2.1 to –6.9 and –2.7 to –7.2, respectively. and Hf-isotope crustal model and Nd-isotope depleted mantle model ages of ca. 1.0–1.2 and ca. 1.1–2.2 Ga, respectively, suggest significant input of Precambrian crust in the Gissar granitoid and Garm orthogneiss melts, consistent with the U-Pb ages of inherited and detrital zircons. The distinct ca. 661–552 Ma Garm gneiss crystallization ages and the ca. 1.0–2.2 Ga model ages (and the lack of 2.4–3.4 Ga model ages) tie the Garm gneisses and the reworked crust of the Gissar range to the northern rim—the Kuqa and Kolar sections—of the Tarim craton, suggesting a united Karakum-Tarim craton. Although about contemporaneous with widespread postcollisional magmatism in the entire Tian Shan, the large volume and short duration of the Gissar range magmatism, including crustal thickening and prograde metamorphism during Tarim craton–Middle Tian Shan block collision, and formation and closure of an oceanic back-arc basin (the Gissar basin), indicate its origin in a distinct setting. Combined, this likely resulted in midcrustal melting and upper-crustal batholith emplacement. Mafic dikes and pipes intruded at ca. 256–238 Ma (median ca. 241 Ma); the source region of the parental melts was within the asthenospheric mantle. The simplest interpretation for these basanites is that they were part of the Tarim flood basalt province; this would extend this province westward from the Tarim craton into the southwestern Tian Shan and imply that the relatively short-lived flood basalt event (ca. 290–270 Ma) was followed by much less voluminous but longer-lasting hotspot magmatism. The 40 Ar/ 39 Ar and detrital apatite fission-track dates outline post–Gissar-Alai range granitoid emplacement cooling, Cimmerian collision events at the southern margin of Asia, Late Cretaceous crustal extension and local magmatism, and early Cenozoic shortening and burial in the far field of the India-Asia collision.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-22
    Description: Large earthquakes occur in rocks undergoing high-pressure/low-temperature metamorphism during subduction. Rhythmic major-element zoning in garnet is a common product of such metamorphism, and one that must record a fundamental subduction process. We argue that rhythmic major-element zoning in subduction zone garnets from the Franciscan Complex, California, developed in response to growth-dissolution cycles driven by pressure pulses. Using electron probe microanalysis and novel techniques in Raman and synchrotron Fourier transform infrared microspectroscopy, we demonstrate that at least four such pressure pulses, of magnitude 100–350 MPa, occurred over less than 300,000 years. These pressure magnitude and time scale constraints are most consistent with the garnet zoning having resulted from periodic overpressure development-dissipation cycles, related to pore-fluid pressure fluctuations linked to earthquake cycles. This study demonstrates that some metamorphic reactions can track individual earthquake cycles and thereby opens new avenues to the study of seismicity.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-01
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-16
    Print ISSN: 0263-4929
    Electronic ISSN: 1525-1314
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...