ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019
    Description: 〈span〉The Varignano section (Trento province, northern Italy) provides an exceptional opportunity for a direct correlation between shallow benthic (SB) zones and standard calcareous plankton zones at the Bartonian−Priabonian transition (middle−late Eocene). This transition has attracted great attention by biostratigraphers in the last decades in searching for a boundary stratotype section. The Alano di Piave section (NE Italy) is the leading candidate for the base Priabonian Global Stratotype Section and Point (GSSP). However, at Alano, larger foraminifera-bearing resedimented levels occur exclusively well below the critical interval. Conversely, the Varignano section, located ∼80 km west of the Alano section, preserves several coarse bioclastic levels rich in larger foraminifera throughout the section. These levels are intercalated with basinal marlstones, crystal tuff layers, and an organic-rich interval. The Varignano section spans planktic foraminiferal Zones E10 and E11 to lower E14, calcareous nannofossil Zones MNP16Bc to MNP18 and Chrons 18n to 17n.2n. The main calcareous plankton events recently proposed as primary base-Priabonian correlation tools, i.e., the last occurrence of the genus 〈span〉Morozovelloides〈/span〉 and the Base common (= acme beginning) of 〈span〉Cribrocentrum erbae〈/span〉 occur, respectively, within C17n.3n and C17n.2n. We correlate prominent crystal tuff layers exposed at Varignano with those outcropping at Alano, including the Tiziano bed, whose base has also been proposed as the GSSP level. The Varignano section spans the upper SB17 and the lower SB18 Zones, with the zonal boundary marked by the first occurrence of the genus 〈span〉Pellatispira〈/span〉. This event occurs in the lower part of Zones E13 and MNP17A within C18n, well below all the potential criteria to identify the GSSP that also includes Chron C17n.1n base. We point out that the usage of shallow-water biostratigraphers in placing the base of the Priabonian at the base of Zone SB19 is inconsistent with the proposed plankton events.〈/span〉
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-16
    Description: The Early Eocene Climatic Optimum (EECO) records the highest prolonged global temperatures over the past 70 Ma. Understanding the causes and timing of Eocene climate change remains a major challenge in Cenozoic paleoceanography, which includes the biotic response to climate variability and the changes among planktic foraminiferal assemblages across the EECO. The symbiont bearing and shallow dwelling genera Morozovella and Acarinina were important calcifiers in the tropical-subtropical early Paleogene oceans but almost completely disappeared at about 38 Ma, near the Bartonian/Priabonian boundary. We show here that morozovellids record a first critical step across the EECO through a major permanent decline in relative abundance from the Tethyan Possagno section and ODP Site 1051 in the western subtropical North Atlantic. Possible causes may include increased eutrophication, weak water column stratification, changes in ocean chemistry, loss of symbiosis and possible complex interaction with other microfossil groups. Relative abundances of planktic foraminiferal taxa at Possagno parallel negative shifts in both δ13C and δ18O of bulk sediment from Chron C24r to basal Chron C20r. The post-EECO stable isotopic excursions towards lighter values are of modest intensity. Significant though ephemeral modifications in the planktic foraminiferal communities occur during these minor isotopic excursions. These modifications are marked by pronounced increases in relative abundance of acarininids, in a manner similar to their behaviour during pre-EECO hyperthermals in the Tethyan settings, which suggest a pronounced biotic sensitivity to climate change of planktic foraminifera even during the post-EECO interval.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...