ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-09
    Description: Imagine standing on the surface of an alien planet or satellite. High in the sky, a soft breeze is interrupted by the whistling sound of a tiny probe sent from Earth to study the atmosphere, or to land on some high-value target on the surface. Now imagine that this probe is followed by a dozen others, all entering in distributed locations throughout the geographic landscape. These probes are systematically and methodically being released from an orbiting spacecraft, perhaps having arrived months in advance. Or maybe the probes themselves are released systematically months in advance by and approaching mother-ship. Although probes have been sent to celestial neighbors before, what is unique is that these new vehicles had their genesis on the highly popular Cubesat specification My dream is to make spaceflight so mundane, we can actually routinely leave the bounds of our planet to explore en masse our solar system. For that, we must create systems that allow us to bring space exploration within the realm of our everyday lives. No longer exquisite systems but just good enough, where failure is an option and a new opportunity.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN67854
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology; Instrumentation and Photography
    Type: GSFC-E-DAA-TN25376 , Earth Science Technology Forum (ESTF) 2015; Jun 23, 2015 - Jun 25, 2015; Pasadena, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC in Precise geodetic infrastructure: national requirements for a shared resource, National Academies Press, Washington, 2010. http://nap.edu/12954, Thriving on our changing planet: a decadal strategy for Earth observation from space, National Academies Press, Washington, 2018. http://nap.edu/24938). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame to have an accuracy of 1 mm and stability of 0.1 mm per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations colocated at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASAs Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.
    Keywords: Instrumentation and Photography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN63011 , Journal of Geodesy (ISSN 0949-7714) (e-ISSN 1432-1394)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: On April 18 2017, NASA Goddard Space Flight Center's IceCube 3U CubeSat was launched by an ATLAS V rocket from Cape Canaveral Air Force Station on board a Cygnus resupply spacecraft, as part of NASA's CubeSat Launch Initiative. Onboard IceCube was an 883 GHz radiometer tuned to detecting ice content in clouds, marking the first time such frequency was used from low-Earth orbit. IceCube successfully demonstrated retrieval of ice water path, generating the first ever global cloud ice map at 883 GHz. Its success provides valuable lessons on how to approach a severely resource-limited space mission and provides great insight into how this experience can be applied to future high-risk, "non-class" missions for NASA and others. IceCube marks the first official NASA Earth Science CubeSat technology demonstration mission. The spacecraft was completed in about 2.5 years starting April 2014 through launch provider delivery in December of 2016. The mission was jointly funded by NASA's Earth Science Technology Office, after competitive selection, and by NASA's Earth Science Directorate. IceCube began its technology demonstration mission in June 2017, providing a pathway to advancing the understanding of ice clouds and their role in climate models; quite a tall order for a tiny spacecraft.
    Keywords: Engineering (General); Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN57586 , AIAA Small Satellite Conference; Aug 04, 2018 - Aug 09, 2018; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-25
    Description: This paper summarizes an end-to-end mission design concept exploring the feasibility of using small satellites together with aero-capture technology to achieve Mars orbit insertion, and subsequent injection into a Phobos-stabilized (or distant retrograde) orbit. The science and mission objectives are to carry out a survey of the mineralogy and morphology of Phobos, to answer basic questions concerning its origin and formation, to test the cohesiveness of Phobos regolith, and to search for potential landing sites for future human or robotic spacecraft. The Mars Small-Spacecraft Human Exploration Resource Prospector with Aero-braking (SHERPA) spacecraft is based on a combination flight-tested prototype vehicle and instruments, and first principle sizing of consumables. The resulting system is fitted with an inflatable aerodynamic decelerator to effect aero-capture into a Mars elliptical orbit, on its way to achieving Phobos orbit. A computational fluid dynamics tool is used to analyze the flow-field and identify potential hot spots during aerodynamic flight. This work advocates for the use of small satellites to test out technologies and operational concepts used in sustained human exploration of Mars, and to carry out scientific exploration of the Mars system. Consistent with a systems engineering approach, this work combines elements of the NASA Human Exploration and Operations Mission Directorate, the Space Technology Mission Directorate, and the Science Mission Directorate, and proposes a scenario for science acquisition, technology verification, trajectory validation, and in-situ resource exploration. We believe these type of missions are essential forerunners to human crewed missions to Mars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN69503 , International Astronautical Congress (IAC) 2019; Oct 21, 2019 - Oct 25, 2019; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SSC16-XII-05 , GSFC-E-DAA-TN32604 , Annual AIAA/USU Conference on Small Satellites; Aug 06, 2016 - Aug 11, 2016; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In 2014 a team at NASA Goddard Space Flight Center (GSFC) studied the feasibility of using active aerocapture to reduce the chemical Delta V requirements for inserting a small scientific satellite into Titan polar orbit. The scientific goals of the mission would be multi-spectral imaging and active radar mapping of Titan's surface and subsurface. The study objectives were to: (i) identify and select from launch window opportunities and refine the trajectory to Titan; (ii) study the aerocapture flight path and refine the entry corridor; (iii) design a carrier spacecraft and systems architecture; (iv) develop a scientific and engineering plan for the orbital portion of the mission. Study results include: (i) a launch in October 2021 on an Atlas V vehicle, using gravity assists from Earth and Venus to arrive at Titan in January 2031; (ii) initial aerocapture via an 8-km wide entry corridor to reach an initial 350X6000 km orbit, followed by aerobraking to reach a 350X1500 km orbit, and a periapse raise maneuver to reach a final 1500 km circular orbit; (iii) a three-part spacecraft system consisting of a cruise stage, radiator module, and orbiter inside a heat shield; (iv) a 22-month mission including station keeping to prevent orbital decay due to Saturn perturbations, with 240 Gb of compressed data returned. High-level issues identified include: (i) downlink capability - realistic downlink rates preclude the desired multi-spectral, global coverage of Titan's surface; (ii) power - demise of the NASA ASRG (Advanced Stirling Radioisotope Generator) program, and limited availability at present of MMRTGs (Multi-Mission Radioisotope Generators) needed for competed outer planet missions; (iii) thermal - external radiators must be carried to remove 4 kW of waste heat from MMRTGs inside the aeroshell, requiring heat pipes that pass through the aeroshell lid, compromising shielding ability; (iv) optical navigation to reach the entry corridor; (v) the NASA requirement of continuous critical event coverage for the orbiter, especially during the peak heating of the aerocapture when the radio link will be broken. In conclusion, although Titan aerocapture allows for considerable savings in propellant mass, this comes at a cost of increased mission complexity. Further architecture study and refinement is required to reduce high-level mission risks and to elucidate the optimum architecture.
    Keywords: Lunar and Planetary Science and Exploration; Astrodynamics
    Type: GSFC-E-DAA-TN43963 , IEEE Aerospace Conference, 2016; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...