ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-28
    Description: Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low. The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QY of 0.6%, which indicates a considerable defect density. Here we report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude. The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a final QY of more than 95%, with a longest-observed lifetime of 10.8 +/- 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amani, Matin -- Lien, Der-Hsien -- Kiriya, Daisuke -- Xiao, Jun -- Azcatl, Angelica -- Noh, Jiyoung -- Madhvapathy, Surabhi R -- Addou, Rafik -- KC, Santosh -- Dubey, Madan -- Cho, Kyeongjae -- Wallace, Robert M -- Lee, Si-Chen -- He, Jr-Hau -- Ager, Joel W 3rd -- Zhang, Xiang -- Yablonovitch, Eli -- Javey, Ali -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1065-8. doi: 10.1126/science.aad2114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Department of Electrical Engineering, Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China. ; National Science Foundation Nanoscale Science and Engineering Center, University of California, Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Department of Materials Science and Engineering, University of Texas, Dallas, Richardson, TX 75080, USA. ; Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20723, USA. ; Department of Electrical Engineering, Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China. ; Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; National Science Foundation Nanoscale Science and Engineering Center, University of California, Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ; Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ajavey@eecs.berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612948" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-29
    Description: Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Wei -- Emaminejad, Sam -- Nyein, Hnin Yin Yin -- Challa, Samyuktha -- Chen, Kevin -- Peck, Austin -- Fahad, Hossain M -- Ota, Hiroki -- Shiraki, Hiroshi -- Kiriya, Daisuke -- Lien, Der-Hsien -- Brooks, George A -- Davis, Ronald W -- Javey, Ali -- P01 HG000205/HG/NHGRI NIH HHS/ -- England -- Nature. 2016 Jan 28;529(7587):509-14. doi: 10.1038/nature16521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA. ; Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, California 94304, USA. ; Integrative Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26819044" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bicycling/physiology ; Body Water ; Calibration ; Electrolytes/analysis ; Female ; Glucose/analysis ; Healthy Volunteers ; Humans ; Lactic Acid/analysis ; Male ; Monitoring, Physiologic/*instrumentation/*methods ; Precision Medicine/instrumentation/methods ; Reproducibility of Results ; Running/physiology ; Skin ; Skin Temperature ; Sweat/*chemistry ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2017-03-25
    Description: There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H 2 S, H 2 , and NO 2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Print ISSN: 0021-4922
    Electronic ISSN: 1347-4065
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-26
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...