ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (7)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2015-06-14
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-26
    Description: Motivation : Photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) is an experimental method based on next-generation sequencing for identifying the RNA interaction sites of a given protein. The method deliberately inserts T-to-C substitutions at the RNA-protein interaction sites, which provides a second layer of evidence compared with other CLIP methods. However, the experiment includes several sources of noise which cause both low-frequency errors and spurious high-frequency alterations. Therefore, rigorous statistical analysis is required in order to separate true T-to-C base changes, following cross-linking, from noise. So far, most of the existing PAR-CLIP data analysis methods focus on discarding the low-frequency errors and rely on high-frequency substitutions to report binding sites, not taking into account the possibility of high-frequency false positive substitutions. Results : Here, we introduce BMix , a new probabilistic method which explicitly accounts for the sources of noise in PAR-CLIP data and distinguishes cross-link induced T-to-C substitutions from low and high-frequency erroneous alterations. We demonstrate the superior speed and accuracy of our method compared with existing approaches on both simulated and real, publicly available human datasets. Availability and implementation : The model is freely accessible within the BMix toolbox at www.cbg.bsse.ethz.ch/software/BMix , available for Matlab and R. Supplementary information: Supplementary data is available at Bioinformatics online. Contact : niko.beerenwinkel@bsse.ethz.ch
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-16
    Description: Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae . Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/~szczurek/lem . Contact: szczurek@mimuw.edu.pl ; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-27
    Description: The Minimum Path Cover (MinPC) problem on directed acyclic graphs (DAGs) is a classical problem in graph theory that provides a clear and simple mathematical formulation for several applications in computational biology. In this paper, we study the computational complexity of three constrained variants of MinPC motivated by the recent introduction of Next-Generation Sequencing technologies. The first variant (MinRPC), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths such that both vertices of each pair belong to the same path. For this problem, we establish a sharp tractability borderline depending on the ‘overlapping degree’ of the instance, a natural parameter in some applications of the problem. The second variant we consider (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum-cardinality set of (not necessarily disjoint) paths ‘covering’ all the vertices of the graph and such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The third variant (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a single path containing the maximum number of the given pairs of vertices. We show that MaxRPSP is W[1]-hard when parameterized by the number of covered pairs and we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree.
    Print ISSN: 0010-4620
    Electronic ISSN: 1460-2067
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-26
    Description: Motivation: Despite recent technological advances in genomic sciences, our understanding of cancer progression and its driving genetic alterations remains incomplete. Results: We introduce TiMEx, a generative probabilistic model for detecting patterns of various degrees of mutual exclusivity across genetic alterations, which can indicate pathways involved in cancer progression. TiMEx explicitly accounts for the temporal interplay between the waiting times to alterations and the observation time. In simulation studies, we show that our model outperforms previous methods for detecting mutual exclusivity. On large-scale biological datasets, TiMEx identifies gene groups with strong functional biological relevance, while also proposing new candidates for biological validation. TiMEx possesses several advantages over previous methods, including a novel generative probabilistic model of tumorigenesis, direct estimation of the probability of mutual exclusivity interaction, computational efficiency and high sensitivity in detecting gene groups involving low-frequency alterations. Availability and implementation: TiMEx is available as a Bioconductor R package at www.bsse.ethz.ch/cbg/software/TiMEx . Contact: niko.beerenwinkel@bsse.ethz.ch Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-02
    Description: The continuous time conjunctive Bayesian network (CT-CBN) is a graphical model for analyzing the waiting time process of the accumulation of genetic changes (mutations). CT-CBN models have been successfully used in several biological applications such as HIV drug resistance development and genetic progression of cancer. However, current approaches for parameter estimation and network structure learning of CBNs can only deal with a small number of mutations (〈20). Here, we address this limitation by presenting an efficient and accurate approximate inference algorithm using a Monte Carlo expectation-maximization algorithm based on importance sampling. The new method can now be used for a large number of mutations, up to one thousand, an increase by two orders of magnitude. In simulation studies, we present the accuracy as well as the running time efficiency of the new inference method and compare it with a MLE method, expectation-maximization, and discrete time CBN model, i.e. a first-order approximation of the CT-CBN model. We also study the application of the new model on HIV drug resistance datasets for the combination therapy with zidovudine plus lamivudine (AZT + 3TC) as well as under no treatment, both extracted from the Swiss HIV Cohort Study database. Availability and implementation: The proposed method is implemented as an R package available at https://github.com/cbg-ethz/MC-CBN . Contact: niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...