ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-21
    Description: Since landing in Gale crater, the Mars Science Laboratory rover Curiosity has traversed fluvial, lacustrine, and eolian sedimentary rocks that were deposited within the crater ~3.6 to 3.2 b.y. ago. Here we describe structures interpreted to be pipes formed by vertical movement of fluidized sediment. Like many pipes on Earth, those in Gale crater are more resistant to erosion than the host rock; they form near other pipes, dikes, or deformed sediment; and some contain internal concentric or eccentric layering. These structures provide new evidence of the importance of subsurface aqueous processes in shaping the near-surface geology of Mars.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: The Curiosity rover has recently found evidence for small amounts of jarosite, a ferric sulfate, in the Pahrump Hills region at the base of Aeolis Mons (Mount Sharp), Gale crater. While jarosite has been described previously at other locations on Mars, including several sites at Meridiani Planum (explored by the Opportunity rover; and Mawrth Vallis (by remote MRO-CRISM observations; this is the first identification in Gale. Jarosite is interpreted to be a mineral indicator of acidic conditions (pH less than 4; on Earth, it is most commonly found in acid rock-drainage or acid sulfate soil environments. However, jarosite has also been described from a number of terrestrial environments where widespread acidic conditions are not prevalent. As a case study, we describe here an occurrence of sedimentary pyrite nodules that have been variably oxidized in situ to gypsum, schwertmannite, K-/Na-jarosite and iron oxides in a polar desert environment on Devon Island, Nunavut, Canada. Remarkably, these nodules occur in loosely consolidated carbonate sediments, which would have required a higher pH environment at their time of formation and deposition. Thus, acidic conditions may only exist at a small (sub-cm) scale or in a restricted temporal window in an otherwise well-buffered environment. On Devon Island, the jarosite occurs in the most oxidized nodules and is never associated directly with pyrite. Schwertmannite, a metastable iron oxyhydroxysulfate that can form at pH higher than that required for jarosite, occurs in association with partially oxidized pyrite. The paragenetic sequence observed here suggests initial formation of schwertmannite and late-stage precipitation of jarosite in restricted micro-environments, possibly forming via transformation of an amorphous schwertmannite-like phase. While the carbonate environment on Devon Island differs significantly from that of Gale crater, i.e., where we find predominantly basaltic sedimentary rocks, this terrestrial analog provides insight into the significance of jarosite with respect to habitability. For example, the variable abundance of jarosite on Mars and possibly in Gale crater points to potentially localized conditions favorable for jarosite formation. Interestingly, small amounts of sulfide minerals have also been detected by Curiosity at Yellowknife Bay; oxidation of sulfide minerals at Pahrump could explain the presence of small amounts of jarosite. The iron-rich rocks at Pahrump may also represent relatively altered basaltic sediments, or they could be sediments that were altered further by a fluid with a distinct, possibly more acidic, composition. In addition, the abundance of iron-rich amorphous material in Gale rocks allows for the possibility that pre-cursor, iron-bearing phases transform to jarosite post-depositionally. Thus, the occurrence of jarosite at Pahrump could reflect changing paleoenvironmental conditions, though continuing study of its context and textural relationships should provide a fuller understanding of the significance of this mineral to past fluid compositions and past habitability at Gale crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33087 , Astrobiology Science Conference (AbSciCon2015); Jun 15, 2015 - Jun 19, 2015; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: JSC-CN-32771 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...