ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-01-14
    Description: We report on the first Raman lidar measurements of stratospheric aerosol layers in the upper troposphere and lower stratosphere over Korea. The data were taken with the multiwavelength aerosol Raman lidar at Gwangju (35.10° N, 126.53° E), Korea. The volcanic ash particles and gases were released around 12 June 2011 during the eruption of the Nabro volcano (13.37° N, 41.7° E) in Eritrea, east Africa. Forward trajectory computations show that the volcanic aerosols were advected from North Africa to East Asia. The first observation of the stratospheric aerosol layers over Korea was on 19 June 2011. The stratospheric aerosol layers appeared between 15 and 17 km height a.s.l. The aerosol layers' maximum value of the backscatter coefficient and the linear particle depolarization ratio at 532 nm were 1.5 ± 0.3 Mm−1 sr−1 and 2.2%, respectively. We found these values at 16.4 km height a.s.l. 44 days after this first observation, we observed the stratospheric aerosol layer again. We continuously probed the upper troposphere and lower stratosphere for this aerosol layer during the following 5 months, until December 2011. The aerosol layers typically occurred between 10 and 20 km height a.s.l. The stratospheric aerosol optical depth and the maximum backscatter coefficient at 532 nm decreased during these 5 months.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-06
    Description: We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98 ± 0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume in dependence of transport time if the pollution layer travelled over China at low heights, i.e., below approximately 3 km above ground. In contrast we do not find such a trend if the dust plumes travelled at heights above 4 km over China. We need a longer time series of lidar measurements in order to determine the change of optical properties of dust with transport time in a quantitative way.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-17
    Description: We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (〉 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (〈 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...