ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (9)
Collection
Publisher
Years
Year
  • 1
  • 2
    Publication Date: 2015-12-02
    Description: A new version of the BVOC emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), including an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. For the 2000–2009 period, we estimate with this model, mean global emissions of 465 Tg C yr-1 for isoprene, 107.5 Tg C yr-1 for monoterpenes, 38 Tg C yr-1 for methanol, 25 Tg C yr-1 for acetone and 24 Tg C yr-1 for sesquiterpenes. The model results are compared to state-of-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets are, in general, in good agreement between the two models. ORCHIDEE emissions are 8 % higher for isoprene, 8 % lower for methanol, 17 % higher for acetone, 18 % higher for monoterpenes and 39 % higher for sesquiterpenes compared to MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, with the ORCHIDEE emissions being higher by 21 Tg C yr-1, and for monoterpenes being higher by 10 and 18 Tg C yr-1 in northern and southern tropical regions compared to MEGAN. The geographical differences, between the two models, are mainly associated with different EF and PFT distribution, while differences in the seasonal cycle are mostly driven by differences in the Leaf Area Index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and Light Dependent Fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly sensitive to the considered compound. When the LAI is scaled by a factor of 0.5 (1.5), the global emission change is −21 % (+8 %) for ORCHIDEE and −15 % (+7 %) for MEGAN regarding isoprene, and is −43 % (+40 %) for ORCHIDEE and −11 % (+3 %) for MEGAN regarding monoterpenes. We find that MEGAN is more sensitive to variation of LDF parameter than ORCHIDEE. Our results highlight the importance and the need to further explore the BVOC emission estimate variability and the interest of using models to investigate the estimate uncertainties.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-07
    Description: This study explores our ability to simulate the atmospheric chemistry stemming from isoprene emissions in pristine and polluted regions of the Amazon basin. We confront two atmospheric chemistry models – a global, Eulerian chemistry-climate model (UM-UKCA) and a trajectory-based Lagrangian model (CiTTyCAT) – with recent airborne measurements of atmospheric composition above the Amazon made during the SAMBBA campaign of 2012. The simulations with the two models prove relatively insensitive to the chemical mechanism employed; we explore one based on the Mainz Isoprene Mechanism, and an updated one that includes changes to the chemistry of first generation isoprene nitrates (ISON) and the regeneration of hydroxyl radicals via the formation of hydroperoxy-aldehydes (HPALDS) from hydroperoxy radicals (ISO2). In the Lagrangian model, the impact of increasing the spatial resolution of trace gas emissions employed from 3.75° × 2.5° to 0.1° × 0.1° varies from one flight to another, and from one chemical species to another. What consistently proves highly influential on our simulations, however, is the model framework itself – how the treatment of transport, and consequently mixing, differs between the two models. The lack of explicit mixing in the Lagrangian model yields variability in atmospheric composition more reminiscent of that exhibited by the measurements. In contrast, the combination of explicit (and implicit) mixing in the Eulerian model removes much of this variability but yields better agreement with the measurements overall. We therefore explore a simple treatment of mixing in the Lagrangian model that, drawing on output from the Eulerian model, offers a compromise between the two models. We use this Lagrangian/Eulerian combination, in addition to the separate Eulerian and Lagrangian models, to simulate ozone at a site in the boundary layer downwind of Manaus, Brazil. The Lagrangian/Eulerian combination predicts a value for an AOT40-like accumulated exposure metric of around 1000 ppbv h, compared to just 20 ppbv h with the Eulerian model. The model framework therefore has considerable bearing on our understanding of the frequency at which, and the duration for which, the rainforest is exposed to damaging ground-level ozone concentrations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-05
    Description: The role that soil, foliage and atmospheric dynamics have on surface carbonyl sulfide (OCS) exchange in a Mediterranean forest ecosystem in Southern France (the Oak Observatory at the Observatoire de Haute Provence, O3HP), was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data demonstrate that the requirements are fulfilled as that OCS uptake can be used as a proxy of gross primary production. Firstly, OCS and carbon dioxide (CO2) diurnal variations and vertical gradients show no net exchange of OCS during the night when the carbon fluxes are dominated by ecosystem respiration. This contrasts with other oak woodland ecosystems of a Mediterranean climate, where nocturnal uptake of OCS by soil and/or vegetation has been observed. Since temperature, the water and organic carbon content of soil at the O3HP should favor the uptake of OCS, the lack of nocturnal net uptake would indicate that its gross consumption in soil is compensated by emission processes that remain to be characterized. Secondly, the uptake of OCS during the photosynthetic period was characterized in two different ways. We measured ozone (O3) deposition velocities and estimated the partitioning of O3 deposition between stomatal and non-stomatal pathways before the start of a joint survey of OCS and O3 surface concentrations. We observed an increasing trend in the relative importance of the stomatal pathway during the morning hours and synchronous steep drops of OCS (60–100 ppt) and O3 (15–30 ppb) after sunrise and before the break-up of the nocturnal boundary layer. The uptake of OCS by plants was characterized from vertical profiles too. However, the time window for calculation of the ecosystem relative uptake (ERU) of OCS, which is a useful tool to partition measured net ecosystem exchange, was limited in June 2012 to few hours after midday. This is due to the disruption of the vertical distribution of OCS by entrainment of OCS rich tropospheric air in the morning, and as the vertical gradient of CO2 reverses when it is still light. Moreover, polluted air masses (up to 700 ppt of OCS) produced dramatic variation in atmospheric OCS-to-CO2 ratios during daytime in June 2013, further reducing the time window for ERU calculation.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-17
    Description: Understanding the processes between the biosphere and the atmosphere is challenged by the difficulty to determine with enough accuracy the composition of the atmosphere. Total OH reactivity, which is defined as the total loss of the hydroxyl radical in the atmosphere, has proved to be an excellent tool to identify indirectly the important reactive species in ambient air. High levels of unknown reactivity were found in several forests worldwide and were often higher than at urban sites. Such results demonstrated the importance of OH reactivity for characterizing two of the major unknowns currently present associated to forests: the set of primary emissions from the canopy to the atmosphere and biogenic compounds oxidation pathways. Previous studies also highlighted the need to quantify OH reactivity and missing OH reactivity at more forested sites. Our study presents results of a field experiment conducted during late spring 2014 at the forest site at the Observatoire de Haute Provence, OHP, France. The forest is mainly composed of downy oak trees, a deciduous tree species characteristic of the Mediterranean region. We deployed the Comparative Reactivity Method and a set of state-of-the-art techniques such as Proton Transfer Reaction-Mass Spectrometry and Gas Chromatography to measure the total OH reactivity, the concentration of volatile organic compounds and main atmospheric constituents at the site. We sampled the air masses at two heights: 2 m, i.e. inside the canopy, and 10 m, i.e. above the canopy, where the mean canopy height is 5 m. We found that the OH reactivity at the site mainly depended on the main primary biogenic species emitted by the forest, which was isoprene and to a lesser extent by its degradation products and long lived atmospheric compounds (up to 26 % during daytime). We determined that the daytime total measured reactivity equaled the calculated reactivity obtained from the concentrations of the compounds measured at the site. Hence, no significant missing reactivity is reported in this specific site, neither inside, nor above the canopy. However, during two nights we reported a missing fraction of OH reactivity up to 50 %, possibly due to unmeasured oxidation products. Our results confirm the weak intra canopy oxidation, already suggested in a previous study focused on isoprene fluxes. They also demonstrate how helpful can be the OH reactivity as a tool to clearly characterize the suite of species present in the atmosphere. We show that our result of reactivity is among the highest reported in forests worldwide and stress the importance to quantify OH reactivity at more and diverse Mediterranean forests.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-08
    Description: Dry deposition is a key component of surface–atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries, and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between present-day (2006) and the future (2050) on dry deposition rates, with special interest for ozone (O3) and nitric acid vapor (HNO3), two compounds which are characterized by very different physico-chemical properties. The 3-D chemistry transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections RCPs 2.6, 4.5 and 8.5. The 2050 RCP 8.5 vegetation distribution leads to a rise up to 7 % (+0.02 cm s−1) in VdO3 and a decrease of −0.06 cm s−1 in VdHNO3 relative to the present day values in tropical Africa, and up to +18 and −15 % respectively in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land cover change in Eurasia, VdHNO3 increases by up to 20 % (annual-mean value) and reduces VdO3 by the same magnitude in this region. When analyzing the impact of dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual mean surface ozone concentration, for both for the RCP8.5 and RCP2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios, regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally up to 5 ppb (+5 %) is calculated on average during the June–August period. This scenario induces also an increase of HNO3 deposited flux exceeding locally 10 % for monthly values. Comparing the impact of land-cover change to the impact of climate change, considering a 0.93 °C increase of global temperature, on dry deposition velocities, we estimate that the strongest increase over lands occurs in the North Hemisphere during winter especially in Eurasia, by +50 % (+0.07 cm s−1) for VdO3 and +100 % (+0.9 cm s−1) for VdHNO3. However, different regions are affected by both changes, with climate change impact on deposition characterized by a latitudinal gradient, while the land-cover change impact is much more heterogeneous depending on vegetation distribution modification described in the future RCP scenarios. The impact of long-term land-cover changes on dry deposition is shown to be non-negligible and should be therefore considered in biosphere-atmospheric chemistry interaction studies in order to have a fully consistent picture.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-09
    Description: Dry deposition is a key component of surface–atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between the present day (2006) and the future (2050) on dry deposition velocities at the surface, with special interest for ozone (O3) and nitric acid (HNO3), two compounds which are characterized by very different physicochemical properties. The 3-D chemistry-transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections, RCPs 2.6, 4.5 and 8.5, and present-day (2007) meteorology. The 2050 RCP 8.5 vegetation distribution leads to a rise of up to 7 % (+0.02 cm s−1) in the surface deposition velocity calculated for ozone (Vd,O3) and a decrease of −0.06 cm s−1 in the surface deposition velocity calculated for nitric acid (Vd,HNO3) relative to the present-day values in tropical Africa and up to +18 and −15 %, respectively, in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land-cover change in Eurasia, Vd,HNO3 increases by up to 20 % (annual-mean value) and reduces Vd,O3 by the same magnitude in this region. When analyzing the impact of surface dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual-mean surface ozone concentration for both the RCP 8.5 and RCP 2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally by up to 5 ppb (+5 %) is calculated on average during the June–August period. This scenario also induces an increase of HNO3 deposited flux exceeding locally 10 % for monthly values. Comparing the impact of land-cover change to the impact of climate change, considering a 0.93 °C increase of global temperature, on dry deposition velocities, we estimate that the strongest increase over lands occurs in the Northern Hemisphere during winter, especially in Eurasia, by +50 % (+0.07 cm s−1) for Vd,O3 and +100 % (+0.9 cm s−1) for Vd,HNO3. However, different regions are affected by both changes, with climate change impact on deposition characterized by a latitudinal gradient, while the land-cover change impact is much more heterogeneous depending on vegetation distribution modification described in the future RCP scenarios. The impact of long-term land-cover changes on dry deposition is shown to be significant and to differ strongly from one scenario to another. It should therefore be considered in biosphere–atmospheric chemistry interaction studies in order to have a fully consistent picture.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-14
    Description: We aimed at quantifying biogenic volatile organic compound (BVOC) emissions in June from three Mediterranean species located at the O3HP site (southern France): Quercus pubescens, Acer monspessulanum and C. coggygria (for isoprene only). As Q. pubescens was shown to be the main BVOC emitter with isoprene representing ≈ 99% of the carbon emitted as BVOC, we mainly focused on this species. C. coggygria was found to be a non-isoprene emitter (no other BVOCs were investigated). To fully understand both the canopy effect on Q. pubescens isoprene emissions and the inter-individual variability (tree to tree and within canopy), diurnal variations of isoprene were investigated from nine branches (seven branches located to the top of canopy at ≈ 4 m above ground level (a.g.l.), and two inside the canopy at ≈ 2 m a.g.l.). The Q. pubescens daily mean isoprene emission rate (ERd) fluctuated between 23 and 98 μgC gDM−1 h−1. Q. pubescens daily mean net assimilation (Pn) ranged between 5.4 and 13.8, and 2.8 and 6.4 μmol CO2 m−2 s−1 for sunlit and shaded branches respectively. Both ERd and isoprene emission factors (Is), assessed according to Guenther et al. (1993) algorithm, varied by a factor of 4.3 among the sunlit branches. While sunlit branches ERd was clearly higher than for shaded branches, there was a non-significant variability of Is (59 to 77 μgC gDM−1 h−1). Diurnal variations of isoprene emission rates (ERs) for sunlit branches were also investigated. ERs were detected at dawn 2 h after Pn became positive and were mostly exponentially dependent on Pn. Diurnal variations of ERs were not equally well described throughout the day by temperature (CT) and light (CL) parameters according to G93 algorithm. Temperature had more impact than photosynthetically active radiation (PAR) on the morning emissions increase, and ER was no longer correlated to CL × CT between solar noon (maximum ER) and mid-afternoon, possibly due to thermal stress of the plant. A comparison between measured and calculated emissions using two isoprene algorithms (G93 and MEGAN – Model of Emissions of Gases and Aerosols from Nature) highlighted the importance of isoprene emission factor Is value used, and some weakness in assessing isoprene emissions under Mediterranean climate conditions (drought) with current isoprene models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-11
    Description: Total OH reactivity, defined as the total loss frequency of the hydroxyl radical in the atmosphere, has proved to be an excellent tool to identify the total loading of reactive species in ambient air. High levels of unknown reactivity were found in several forests worldwide and were often higher than at urban sites.Our study presents atmospheric mixing ratios of biogenic compounds and total OH reactivity measured during late spring 2014 at the forest of downy oak trees of the Observatoire de Haute Provence (OHP), France. Air masses were sampled at two heights: 2 m, i.e., inside the canopy, and 10 m, i.e., above the canopy, where the mean canopy height is 5 m.We found that the OH reactivity at the site mainly depended on the main primary biogenic species emitted by the forest, which was isoprene and to a lesser extent by its degradation products and long-lived atmospheric compounds (up to 26 % during daytime). During daytime, no significant missing OH reactivity was reported at the site, either inside or above the canopy. However, during two nights we determined a missing fraction of OH reactivity up to 50 %, possibly due to unmeasured oxidation products. We confirmed that no significant oxidation of the primary species occurred within the canopy; primary compounds emitted by the forest were fast transported to the atmosphere. Finally, the OH reactivity at this site was maximum 69 s−1, which is a high value for a forest characterized by a temperate climate. Observations in various and diverse forests in the Mediterranean region are therefore needed to better constrain the impact of reactive gases over this area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...