ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 2015-2019  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-20
    Description: Recent work suggests that the mineralogical sequence of the Murray formation at Gale crater may have resulted from diagenetic alteration after sedimentation, or deposition in a stratified lake with oxic surface and anoxic bottom waters. Fe-containing clay minerals are common both at Gale crater, and throughout the Noachian-aged terrains on Mars. These clay minerals are primarily ferric (Fe3+), and previous work suggests that these ferric clay minerals may result from alteration of ferrous (Fe2+) smectites that were oxidized after deposition. The detection of trioctahedral smectites at Gale crater by CheMin suggests Fe2+ smectite was also deposited during the early Hesperian. However, due to their sensitivity to oxygen, Fe2+ smectites are difficult to analyze on Earth and very few saponite dissolution rates exist in the literature. To the best of our knowledge, no experiments have measured the dissolution rates of ferrous saponites under oxidizing and reducing conditions. In order to better understand the characteristics of water-rock interaction at Gale crater, particularly the oxidation state, we report our results to date on ongoing syntheses of ferrous and magnesium saponites and dissolution experiments of natural saponite under ambient conditions. Future experiments will include the dissolution of synthetic ferric, ferrous, and magnesium saponites under oxidizing and anoxic conditions at a range of pH values.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI Contrib. No. 2132 , JSC-E-DAA-TN66074 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Recent analyses of X-ray diffraction (XRD) data from the CheMin instrument using the FULLPAT program have documented the presence of X-ray amorphous materials at multiple sites within Gale Crater, Mars. These materials are believed to be to be iron-rich based on chemical data, and at least some of them are believed to be weathering products based on volatile contents. However, the characteristics of these proposed Fe-rich weathering products remain poorly understood. To better understand these X-ray amorphous materials on Mars, we are 1) examining weathering products formed on Fe-rich parent material in terrestrial soils across a range of climatic conditions, and 2) performing burial experiments of Fe- and Mg- rich olivine in these soils. We describe each of these approaches below.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN66033 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...