ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (22)
  • 2015-2019  (22)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-20
    Description: Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation features will be presented which indicate contrasts between the RAC and nonRAC cases, and which highlight key effects radiatively-active clouds have on physical and dynamical processes active in the current climate of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35548 , Meeting of the Division for Planetary Sciences; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere could control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. Our current work builds on these initial investigations with a version of the NASA Ames Mars Global Climate Model (GCM) that includes a sophisticated CO2 cloud microphysical scheme. Processes of cloud nucleation, growth, sedimentation, and radiative effects are accounted for. Simulated results thus far agree well with the Colaprete et al. studythe zonally asymmetric nature of the atmospheric circulation produces enhanced snowfall over the residual cap hemisphere throughout much of the winter season. However, the predicted snowfall patterns vary significantly with season throughout the cap growth and recession phases. We will present a detailed analysis of the seasonal evolution of the predicted atmospheric circulation and snowfall patterns to more fully evaluate the hypothesis that the atmosphere controls the placement of the south residual cap.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35545 , Meeting of the Division for Planetary Science; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.
    Keywords: Lunar and Planetary Science and Exploration
    Type: EGU2016-16543 , ARC-E-DAA-TN30394 , Geophysical Research Abstracts; 18|European Geosciences Union General Assembly 2016 (EGU); Apr 17, 2016 - Apr 22, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: NASAs Mars Climate Modeling Center at Ames Research Center is currently undergoing an exciting period of growth in personnel, modeling capabilities, and science productivity. We are transitioning from our legacy Arakawa C-grid finite-difference dynamical core to the NOAA/GFDL cubed-sphere finite-volume dynamical core for simulating the climate of Mars in a global framework. This highly parallelized core is scalable and flexible, which allows for significant improvements in the horizontal and vertical resolutions of our simulations. We have implemented the Ames water ice cloud microphysics package described in Haberle et al. (2018) into this new dynamical core. We will present high-resolution simulations of the dust and water cycles that show that sub-degree horizontal resolution improves the agreement between the vertical distribution of dust and water ice and observations. In particular, both water ice clouds and dust are transported to higher altitudes due to stronger topographic circulations at high resolution. Preliminary results suggest that high-resolution global modeling is needed to properly capture critical features of the dust and water cycles, and thus the current Mars climate.
    Keywords: Geosciences (General)
    Type: ARC-E-DAA-TN62725 , Fall Meeting of the American Geophysical Union (AGU); 10-14 Dec. 20185; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN46928 , Annual Division for Planetary Sciences Meeting (DPS 2017); Oct 15, 2017 - Oct 20, 2017; Provo, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-27
    Description: A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-19
    Description: From late-autumn through early-spring, the middle- and high-latitudes of both hemispheres of Mars and its predominantly carbon-dioxide atmosphere support mean equator-to-pole thermal contrasts, and then, support a strong mean westerly polar vortex. Observations from orbiting spacecraft indicate that this intense mean baroclinicity-barotropicity supports large-scale eastward traveling weather systems (i.e., transient, traveling synoptic-period waves, on the order of the Rossby deformation scale). On Earth, extratropical weather disturbances arise from wind-shear instabilities, and these are critical components of the terrestrial global circulation. So it is the case for Mars. Large-scale traveling weather systems on Mars serve as agents in the transport of heat, momentum and scalar and tracer quantities (e.g., atmospheric dust, watervapor, ice clouds, chemical species, etc). Such weather systems interact with other large-scale atmospheric circulation components, namely, quasi-stationary (i.e., forced Rossby) modes; global thermal tidal modes; and then, upon large-/continental- geographical scales, upslope/ down-slope flows amongst high relief, low relief, impact basins, and volcanic rises, and more. The character of Mars' traveling extratropical weather disturbances in its southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (i.e., Mars GCM), and one from the Agency's Mars Climate Modeling Center (MCMC) based at the NASA Ames Research Center. The climate model includes several complex atmospheric physical packages. With such physics modules, our global climate simulations present comparatively well with observations of the planet's current water cycle (Haberle et al.,2019). The climate model is "forced" with an annual dust cycle (i.e., nudged based on MGS/TES observations). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN76138 , AGU 100 Fall Meeting (2019); Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Ecofys
    In:  INDCs Lower Projected Warming to 2.7°C | Climate Action Tracker Briefing
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Ecofys
    In:  EU Could Clarify Forestry, Land Use Accounting to Strengthen its INDC | Climate Action Tracker Briefing
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...