ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-20
    Description: Traditional methods for measuring whitecap coverage using digital video systems mounted to measure a large footprint can miss features that do not produce a high enough contrast to the background. Here, a method for accurately measuring the fractional coverage, intensity, and decay time of whitecaps using above-water radiometry is presented. The methodology was developed using data collected in the Southern Ocean under a wide range of wind and wave conditions. Whitecap quantities were obtained by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal from a single channel. Breaking intensity and decay time were produced from the integration of and the exponential fit to radiance or reflectance over the lifetime of the whitecap. When using the lowest magnitude threshold possible, radiometric fractional whitecap coverage retrievals were consistently higher than fractional coverage from high-resolution digital images, perhaps because the radiometer captures more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically obtained whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using robust linear least squares, showed a near-cubic dependence. Increasing the magnitude threshold for whitecap detection from 2 to 4 times the interquartile range produced a wind speed–whitecap relationship most comparable to the concurrently collected fractional coverage from digital imagery and previously published wind speed–whitecap parameterizations.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-01
    Description: One of the most challenging problems in predicting the Madden–Julian oscillation (MJO) is the initiation of large-scale convective activity associated with the MJO over the tropical Indian Ocean. The lack of observations is a major obstacle. The Dynamics of the MJO (DYNAMO) field campaign collected unprecedented observations from air-, land-, and ship-based platforms from October 2011 to February 2012. Here we provide an overview of the aircraft observations in DYNAMO, which captured an MJO initiation event from November to December 2011. The National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft was stationed at Diego Garcia and the French Falcon 20 aircraft on Gan Island in the Maldives. Observations from the two aircraft provide a unique dataset of three-dimensional structure of convective cloud systems and their environment from the flight level, airborne Doppler radar, microphysics probes, ocean surface imaging, global positioning system (GPS) dropsonde, and airborne expendable bathythermograph (AXBT) data. The aircraft observations revealed interactions among dry air, the intertropical convergence zone (ITCZ), convective cloud systems, and air–sea interaction induced by convective cold pools, which may play important roles in the multiscale processes of MJO initiation. This overview focuses on some key aspects of the aircraft observations that contribute directly to better understanding of the interactions among convective cloud systems, environmental moisture, and the upper ocean during the MJO initiation over the tropical Indian Ocean. Special emphasis is on the distinct characteristics of convective cloud systems, environmental moisture and winds, air–sea fluxes, and convective cold pools during the convectively suppressed, transition/onset, and active phases of the MJO.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-01
    Description: Surface wave measurements from ships pose difficulties because of motion contamination. Cifuentes-Lorenzen et al. analyzed laser altimeter and marine X-band radar (MR) wave measurements from the Southern Ocean Gas Exchange Experiment (SOGasEx). They found that wave measurements from both sensors deteriorate precipitously at ship speeds 3 m s−1. This study demonstrates that MR can yield accurate wave frequency–direction spectra independent of ship motion. It is based on the same shipborne SOGasEx wave data but uses the MR wave retrieval method proposed by Lund et al. and a novel empirical transfer function (ETF). The ETF eliminates biases in the MR wave spectra by redistributing energy from low to high frequencies. The resulting MR wave frequency–direction spectra are shown to agree well with laser altimeter wave frequency spectra from times when the ship was near stationary and with WAVEWATCH III (WW3) model wave parameters over the full study period.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...