ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Astromaterials Curation Division at NASAs Johnson Space Center houses seven sample collections stored in separate clean rooms to avoid cross-contamination. Prior to receiving new sample collections from carbon rich asteroids, we instituted a monitoring program to characterize the microbial ecology of these labs and to understand how organisms could interact with and potentially contaminate current and future collections. Methods: Beginning in Oct. 2017 we sampled the Meteorite (ISO 7 equivalent) and Pristine Lunar (ISO 5 equivalent) labs on a monthly basis. Surface samples were collected using dry swabs. Air samples were collected using an impactor style air sampler. Cultivable organisms were identified and characterized. Aliquots of each sample were also preserved for DNA sequencing. For each sampling event recovery rate was calculated as the percentage of samples showing microbial growth1. Fungal colonies were selected for amino acid extraction and analysis via Ultra- Performance Liquid Chromatography with Fluorescence Detection and Mass Spectrometry.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN69080 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-24
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN72290 , SPIE Optics + Photonics; Aug 11, 2019 - Aug 15, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-21
    Description: There is a limited amount of hypervelocity impact (HVI) data on pressurized composite overwrapped pressure vessels (COPV). In recent years, NASA has performed HVI tests to characterize impact conditions resulting in either leak or burst of the COPVs representative of spacecraft hardware. This paper reports on the results of 40 tests that have been conducted on several types of COPV configurations, pressurized by inert gas to near the vessels rated maximum expected operating pressure (MEOP). These tests were used to better understand COPV response under HVI conditions and develop ballistic limit equations (BLE) related to these tests.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN75111 , Internation Orbital Debris Conference (IOC); Dec 09, 2019 - Dec 12, 2019; Sugar Land, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.
    Keywords: Numerical Analysis; Research and Support Facilities (Air); Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24118 , AIAA Propulsion and Energy Conference; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: JSC-CN-33199 , 2015 ASTM International Rolling Element Bearings; Apr 29, 2015 - Apr 30, 2015; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."
    Keywords: Numerical Analysis; Research and Support Facilities (Air); Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN24115 , International Energy Conversion Engineering Conference (IECEC 2015); Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-14
    Description: Meteoroid and orbital debris (MMOD) shielding can include NextelTM ceramic cloth in the outer layers of the shielding to enhance MMOD breakup. The Nextel fabric can contain size (or sizing) which aids in manufacture of the fabric. Sizing is a starch, oil or waxy material that is added to the rovings and yarns to protect the fibers from being cut or broken during the fabric manufacturing process and by later handling. For spacecraft applications, sizing is removed by heat-cleaning to reduce/eliminate off-gassing during vacuum operations. After the sizing is removed, the fibers in the woven fabric are prone to breakage during handling which reduces fabric strength. Because heat-cleaned Nextel tends to shed fibers that can be irritating to workers, the usual practice for hypervelocity impact tests is to use Nextel with sizing. The reduced strength of heat-cleaned Nextel does not typically effect the performance of MMOD shields with Nextel used in outer layers of the shield, because the density and areal density of the ceramic fibers in the fabric control MMOD breakup (not fabric strength). This paper provides data demonstrating that hypervelocity impact protection performance is not adversely altered for shields containing heat-cleaned Nextel compared to Nextel with sizing.
    Keywords: Space Sciences (General)
    Type: JSC-E-DAA-TN75025 , International Orbital Debris Conference (IOC); Dec 09, 2019 - Dec 12, 2019; Sugar Land, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...