ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Since early 2015, the Mars Exploration Rover Opportunity has been exploring the break in the rim of Endeavour Crater dubbed Marathon Valley by the rover team. Marathon Valley was identified by orbital hyperspectral data from the MRO CRISM as having a relatively strong spectral feature in the 2.3 micrometer region indicative of an Mg or Fe-OH combination overtone absorption band indicative of smectite clay. Earlier in its mission, Opportunity examined the Matijevic Hill region on the more northerly Cape York crater rim segment and found evidence for smectite clays in a stratigraphically lower, pre-impact formed unit dubbed the Matijevic formation. However, the smectite exposures in Marathon Valley appear to be associated with the stratigraphically higher Shoemaker formation impact breccia. Evidence for alteration in this unit in Marathon Valley is provided by Pancam multispectral observations in the 430 to 1010 nm visible/near infrared (VNIR) spectral range. Sinuous troughs ("red zones") contain fragmented cobbles and pebbles displaying higher blue-to-red slopes, moderately higher 535 nm band depths, elevated 754 to 934 nm, and negative 934 to 1009 nm slopes. The lack of an absorption at 864 to 904 nm indicates the lack of crystalline red hematite in these red zones, but likely an enrichment in nanophase ferric oxides. The negative 934 to 1009 nm slope is potentially indicative of the presence of adsorbed or structurally bound water. A scuff in a red zone near the southern wall of Marathon Valley uncovered light-toned soils and a pebble with an 803 to 864 nm absorption resembling that of light-toned Fe-sulfate bearing soils uncovered by the Spirit rover in the Columbia Hills of Gusev crater. APXS chemical measurements indicated enrichments of Mg and S in the scuff soils and the pebble, Joseph Field, with the strongest 803 nm band- consistent with Mg and Fe sulfates. The presence of Fe and Mg sulfates can be interpreted as evidence of a potentially later episode of aqueous alteration with an earlier, neutral to alkaline pH episode forming the Fe/Mg smectites and a later acid pH episode forming the Fe and Mg sulfates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36817 , Geological Society of America (GSA) Annual Meeting 2016; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: We describe the current state of knowledge about Mercury's interior structure. We review the available observationalconstraints, including mass, size, density, gravity eld, spin state, composition, and tidal response. These data enablethe construction of models that represent the distribution of mass inside Mercury. In particular, we infer radial prolesof the pressure, density, and gravity in the core, mantle, and crust. We also examine Mercury's rotational dynamicsand the inuence of an inner core on the spin state and the determination of the moment of inertia. Finally, we discussthe wide-ranging implications of Mercury's internal structure on its thermal evolution, surface geology, capture in aunique spin-orbit resonance, and magnetic eld generation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67157 , Mercury: The View after MESSENGER; 85-113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This study developed, analyzed, and compared mission architectures for human exploration of Mars' Moons within the context of an Evolvable Mars Campaign. METHODS: All trades assumed conjunction class missions to Phobos (approximately 500 days in Mars system) as it was considered the driving case for the transportation architecture. All architectures assumed that the Mars Transit Habitat would remain in a High Mars Orbit with crewmembers transferring between HMO and Phobos in a small crew taxi vehicle. A reference science / exploration program was developed including performance of a standard set of tasks at 55 locations on the Phobos surface. Detailed EVA timelines were developed using realistic flight rules to accomplish the reference science tasks using exploration systems ranging from jetpacks to multi-person pressurized excursion vehicles combined with Phobos surface and orbital (L1, L4/L5, 20km Distant Retrograde Orbit) habitat options. Detailed models of propellant mass, crew time, science productivity, radiation exposure, systems and consumables masses, and other figures of merit were integrated to enable quantitative comparison of different architectural options. Options for pre-staging assets using solar electric propulsion (SEP) vs. delivering all systems with the crew were also evaluated. Seven discrete mission architectures were evaluated. RESULTS: The driving consideration for habitat location (Phobos surface vs. orbital) was radiation exposure, with an estimated reduction in cumulative mission radiation exposure of up to 34% (vs. Mars orbital mission) when the habitat is located on the Phobos surface, compared with only 3-6% reduction for a habitat in a 20km DRO. The exploration utility of lightweight unpressurized excursion vehicles was limited by the need to remain within 20 minutes of Solar Particle Event radiation protection combined with complex GN&C systems required by the non-intuitive and highly-variable gravitational environment. Two-person pressurized excursion vehicles as well as mobile surface habitats offer significant exploration capability and operational benefits compared with unpressurized EVA mobility systems at the cost of increased system and propellant mass. Mechanical surface translation modes (i.e. hopping) were modeled and offer potentially significant propellant savings and the possibility of extended exploration operations between crewed missions. Options for extending the utilization of the crew taxi vehicle were examined, including use as an exploration asset for Phobos surface exploration (when combined with an alternate mobility system) and as an EVA platform, both on Phobos and for contingency EVA on the Mars Transit Habitat. CONCLUSIONS: Human exploration of Phobos offers a scientifically meaningful first step towards human Mars surface missions that develops and validates transportation, habitation, and exploration systems and operations in advance of the Mars landing systems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-32275 , IEEE Aersopace Conference; Mar 07, 2015 - Mar 14, 2015; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2018-219417 , E-19314 , GRC-E-DAA-TN35334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: M19-7416 , Meteoroids 2019; Jun 17, 2019 - Jun 21, 2019; Bratislava, Slovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Asteroid Impact and Deflection Assessment (AIDA) mission concept would demonstrate an asteroid deflection through a high velocity spacecraft impact on the moon of the binary asteroid system Didymos. The NASA DART spacecraft would be launched on an impacting trajectory, while the ESA AIM spacecraft would be orbiting and observing the system before and after the impact. Radio science measurements with AIM provides information on the complex dynamics of the binary system. Combined with the DART experiment, the ability to measure the imparted delta-v has significant implications for how well the proposed AIDA mission would serve as a deflection demonstration. In addition, the impact-induced deflection, cratering, and mass transfer can be interpreted as indicators of surface properties. We provided preliminary analyses of the measurability of the DART impact as function of generic AIM spacecraft proximity operations and knowledge of the Didymos system from radio science techniques.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-CL#17-1723 , International Symposium on Space Flight Dynamics; Jun 03, 2017 - Jun 09, 2017; Matsuyama; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASAs Mars 2020 mission is charged with responding to the highest priority objectives of the 2011 planetary sciences decadal survey, conducting extensive in-situ science on the surface of the Red Planet, and carrying important cross-agency human precursor technologies. The mission concept was predicated on and enabled by leveraging the Curiosity rover engineering design, successful Sky Crane landing systems, and other elements from the Mars Science Laboratory project into a new mission with new payload elements. High-heritage paradigms are unusual for flagship science missions and can be difficult to execute as the realities of spacecraft development intervene. However the project has had good success to-date from concept through formulation and into early implementation. This paper will describe the general approaches developed and used by the Mars 2020 Project team at NASAs Jet Propulsion Laboratory (JPL).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-5042 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: While there is growing interest in implementing future NASA Earth Science missions as Distributed Spacecraft Missions (DSMs), there are currently no tool to help in the design of DSMs. The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. Our Trade-space Analysis Tool for Constellations (TAT-C) allows to investigate questions such as: "Which type of constellations should be chosen? How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" This paper provides a description of the TAT-C tool and its components.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN43210 , International Geoscience And Remote Sensing Symposium 2017 (IGARSS 2017); Jul 23, 2018 - Jul 28, 2018; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with greater than 4 sigma confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of approx. greater than 200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 x 10(exp 13) to 1.4 x 10(exp 14) cm(exp 2). The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form approx. 10(exp 7) cell membranes/cu cm in Titan's sea Ligeia Mare.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN51142 , Science Advances (e-ISSN 2375-2548); 3; 7; e1700022
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic questions and associated rationales, derived from these candidate architectural objectives, provide the framework by which the ground-test protocol will address the DSG stack elements and configurations, systems and subsystems, and habitation, science, and EVA functions. From these strategic questions, high-level functional requirements for the DSG were drafted and associated ground-test objectives and analysis protocols were established. Bottom-up development incorporated objectives from NASA SMEs in autonomy, avionics and software, communication, environmental control and life support systems, exercise, extravehicular activity, exploration medical operations, guidance navigation and control, human factors and behavioral performance, human factors and habitability, logistics, Mission Control Center operations, power, radiation, robotics, safety and mission assurance, science, simulation, structures, thermal, trash management, and vehicle health. Top-down and bottom-up objectives were integrated to form overall functional requirements - ground-test objectives and analysis mapping. From this mapping, ground-test objectives were organized into those that will be evaluated through inspection, demonstration, analysis, subsystem standalone testing, and human-in-the-loop (HITL) testing. For the HITL tests, mission-like timelines, procedures, and flight rules have been developed to directly meet ground test objectives and evaluate specific functional requirements. Data collected from these assessments will be analyzed to determine the acceptability of habitation element configurations and the combinations of capabilities that will result in the best habitation platform to be recommended by the test team for Phase 3.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN48015 , IEEE Aerospace Conference 2018; Mar 03, 2018 - Mar 10, 2018; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...