ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: In this study, we integrate recent in situ measurements with satellite retrievals of dust physical and radiative properties to quantify dust direct radiative effects on shortwave (SW) and longwave (LW) radiation (denoted as DRESW and DRELW, respectively) in the tropical North Atlantic during the summer months from 2007 to 2010. Through linear regression of the CERES-measured top-of atmosphere (TOA) flux versus satellite aerosol optical depth (AOD) retrievals, we estimate the instantaneous DRESW efficiency at the TOA to be -49+/-7.1 W/sq.m AOD(exp -1) and -36+/-4:8W/sq.m AOD(exp -1) based on AOD from MODIS and CALIOP, respectively. We then perform various sensitivity studies based on recent measurements of dust particle size distribution (PSD), refractive index, and particle shape distribution to determine how the dust microphysical and optical properties affect DRE estimates and its agreement with the above-mentioned satellite-derived DREs. Our analysis shows that a good agreement with the observation-based estimates of instantaneous DRESW and DRELW can be achieved through a combination of recently observed PSD with substantial presence of coarse particles, a less absorptive SW refractive index, and spheroid shapes. Based on this optimal combination of dust physical properties we further estimate the diurnal mean dust DRE(sub SW) in the region of -10W/sq.m at TOA and -26W/sq.m at the surface, respectively, of which ~30% is canceled out by the positive DRE(sub LW). This yields a net DRE of about -6:9 and -18.3 W/sq.m at TOA and the surface, respectively. Our study suggests that the LW flux contains useful information on dust particle size, which could be used together with SW observations to achieve a more holistic understanding of the dust radiative effect.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN63292 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 15; 11303-11322
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Massive dust emitted from North Africa can transport long distances across the tropical Atlantic Ocean, reaching the Americas. Dust deposition along the transit adds microorganisms and essential nutrients to marine ecosystem, which has important implications for biogeochemical cycle and climate. However, assessing the dust-ecosystemclimate interactions has been hindered in part by the paucity of dust deposition measurements and large uncertainties associated with oversimplified representations of dust processes in current models. We have recently produced a unique dataset of seasonal dust deposition flux and dust loss frequency into the tropical Atlantic Ocean at a nominal resolution of 200 km x 500 km by using the decade-long (2007-2016) record of aerosol three-dimensional distribution from four satellite sensors, namely CALIOP, MODIS, MISR, and IASI. On the basis of the ten-year average, the yearly dust deposition into the tropical Atlantic Ocean is estimated at 98-153 Tg. The dust deposition shows large spatial and temporal (on seasonal and interannual scale) variability. The satellite observations also yield an estimate of annual mean dust loss frequency of 0.052 ~ 0.078 d-1, a useful diagnostic that makes it possible to disentangle the dust transport and removal processes from the dust emissions when identifying the major factors contributing to the uncertainties and biases in the model simulated dust deposition. In this study, we use the dataset along with in situ and remote sensing observations to assess how well NASA GEOS model performs in simulating trans-Atlantic dust transport and deposition. We found that the GEOS modeling of dust deposition falls within the range of satellite-based estimates. However, this reasonable agreement in dust deposition is a compensation of the model's underestimate of dust emissions and overestimate of dust removal efficiency. Further, the overestimate of dust removal efficiency results largely from the model's overestimate of rainfall rate. Our results provide insights into the model's deficiencies at process level, which could better guide model improvements.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN70551 , COAA International Conference on Atmosphere, Ocean, and Climate Change (ICAOCC); Jul 10, 2019 - Jul 12, 2019; Nanjing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three dimensional (3D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8 to approximately 48) Tg a(exp -1) or 29 (8 to approximately 50) kg ha(exp -1) a(exp -1). The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multi-year mean estimate of dust deposition matches better with estimates from in-situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.0060.037) Tg P of phosphorus per year, equivalent to 23 (7 to approximately 39) g P ha(exp -1) a(exp -1) to fertilize the Amazon rainforest. This out-of-Basin P input largely compensates the hydrological loss of P from the Basin, suggesting an important role of African dust in preventing phosphorus depletion on time scales of decades to centuries.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN20912 , Geophysical Research Letters (ISSN 1944-8007); 42; 6; 1984-1991
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41569 , Atmospheric Environment (ISSN 1352-2310); 148; 282-296
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...