ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: GEONEX is a processing pipeline that produces a suite of satellite land surface products using data streams from the latest geostationary (GEO) sensors including the GOES016/ABI and the Himawari-8/AHI. The suite, created collaboratively by scientists from NASA and NOAA, includes top-of-atmosphere (TOA) reflectances, land surface reflectances (LSRs), vegetation indices, LAI/fPAR, and other downstream products. As a key component of the GEONEX product processing, we have adapted the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to produce LSRs from the TOA data. Because the algorithm depends on building "stacks" of images, we first run internal geo-registration checks to ensure geo-spatial accuracy and consistency of the input (L1B) data before transferring them from the geostationary projection into a tile system in geographic grids. Scan-time is inferred from metadata and applied to calculate the sun-sensor angles for each grid cell. The MAIAC algorithm is run to detect clouds/shadows, estimate aerosol optical thickness (AOT), perform atmospheric corrections, and generate LSRs. We have processed 18-months (from 2016/04 onward) of AHI data over East Asia and Oceania at a 10-minute time step and 10-months (from 2018/01 onward) of ABI data over North and South Americas at a 15-minute time step. As a verification measure, we compare the GEONEX (AHI/ABI) surface reflectances with the standard MODIS products (MOD09GA) and the MODIS MAIAC products over pixels that have similar sun-view geometries. The results indicate general linear relationships between GEONEX and corresponding MODIS LSRs. In particular, the RMSEs between GEONEX and MOD09 data are comparable to those between MOD09 and MODIS MAIAC products, suggesting that the uncertainties of GEONEX LSRs fall into an acceptable range. However, direct comparisons of LSRs over pixels with different sun-view angles are not as straightforward and require more modeling efforts to correct the directional effects. Evaluation of such angular influences on the downstream products (e.g., vegetation indices) is also under investigation.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN60852 , AGU 2018 Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data. from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. and meet the levels of accuracy needed for aerosol monitoring.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN39705 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 5; 3005–3022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The quantitative assessment of cloud cover and atmospheric constituents improves our ability to exploit the climate feedback into the Amazon basin. In the 21st century, three droughts have already occurred in the Amazonia (e.g. 2005, 2010, 2015), inducing regional changes in the seasonal patterns of atmospheric constituents. In addition to climate, the atmospheric dynamic and attenuation properties are long-term challenges for satellite-based remote sensing of this ecosystem: high cloudiness, abundant water vapor content and biomass burning season. Therefore, while climatology analysis supports the understanding of atmospheric variability and trends, it also offers valuable insights for remote sensing applications. In this study, we evaluate the seasonal and interannual variability of cloud cover and atmospheric constituents (aerosol loading, water vapor and ozone content) over the Amazon basin, with focus on both climate analysis and remote sensing implications. We take the advantage of new atmosphere daily products at 1 km resolution derived from Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data. An intercomparison of Aerosol Robotic Network (AERONET) and MAIAC aerosol optical depth (AOD) and columnar water vapor (CWV) showed quantitative information with a correlation coefficient higher than 0.81. Our results show distinct regional patterns of cloud cover across the Amazon basin: northwestern region presets a persistent cloud cover (〉 80%) throughout the year, while low cloud cover (0-20%) occurs in the southern Amazon during the dry season. The cloud-free period in the southern Amazon is followed by an increase in the atmospheric burden due to fire emissions. Our results reveal that AOD records are changing in terms of area and intensity. During the 2005 and 2010 droughts, the positive AOD anomalies ( 〉 0.1) occurred over 39.03% (240.3 million ha) and 27.14% (165.99 million ha) of total basin in the SON season, respectively. In contrast, the recent 2015 drought occurred towards the end of year (October through December) and these anomalies were observed over 23.72% (145 million ha) affecting areas in the central and eastern Amazon unlike previous droughts. The water vapor presents high concentration values (4.0-5.0 g/sq.cm) in the wet season (DJF), while we observed a strong spatial gradient from northwestern to southeastern of the basin during the dry season. In addition, we also found a positive trend of water vapor content ( 0.3 g/sq.cm) between 2000 and 2015. The total ozone typically varies between 220 and 270 DU, and it has a seasonal change of 25-35 DU from wet season to dry season caused by large emissions of ozone precursors and long-range transport. Finally, while this study contributes to climatological analysis of atmospheric constituents, the remote sensing users can also understand the regional constraints caused by atmospheric attenuation, such as high aerosol loading and cloud obstacles for surface observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN57820 , ISPRS Journal of Photogrammetry and Remote Sensing (ISSN 0924-2716) (e-ISSN 1872-8235)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We estimate global terrestrial gross primary production (GPP) based on models that use satellite data within a simplified light-use efficiency framework that does not rely upon other meteorological inputs. Satellite-based geometry-adjusted reflectances are from the MODerate-resolution Imaging Spectroradiometer (MODIS) and provide information about vegetation structure and chlorophyll content at both high temporal (daily to monthly) and spatial (1 km) resolution. We use satellite-derived solar-induced fluorescence (SIF) to identify regions of high productivity crops and also evaluate the use of downscaled SIF to estimate GPP. We calibrate a set of our satellite-based models with GPP estimates from a subset of distributed eddy covariance flux towers (FLUXNET 2015). The results of the trained models are evaluated using an independent subset of FLUXNET 2015 GPP data. We show that variations in light-use efficiency (LUE) with incident PAR are important and can be easily incorporated into the models. Unlike many LUE-based models, our satellite-based GPP estimates do not use an explicit parameterization of LUE that reduces its value from the potential maximum under limiting conditions such as temperature and water stress. Even without the parameterized downward regulation, our simplified models are shown to perform as well as or better than state-of-the-art satellite data-driven products that incorporate such parameterizations. A significant fraction of both spatial and temporal variability in GPP across plant functional types can be accounted for using our satellite-based models. Our results provide an annual GPP value of 140 Pg C year 1 for 2007 that is within the range of a compilation of observation-based, model, and hybrid results, but is higher than some previous satellite observation-based estimates
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60709 , Remote Sensing (ISSN 2072-4292) (e-ISSN 2072-4292); 10; 9; 1346
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index (CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: NDVI, EVI, WDRVIgreen, or CIgreen). However, the empirical regressions between VI*PAR and GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for regressions). Therefore they are somewhat difficult to interpret and apply. This study investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP estimation performance for the scaled VIs was compared to results obtained with the original VIs and evaluated with standard statistics: the coefficient of determination (R2), the root mean square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions. The scaled CIgreen did not improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the scaled EVI or NDVI in estimating crop daily GPP at these agricultural fields. The scaled VIs are more physiologically meaningful than original un-scaled VIs, but scaling factors and offsets may vary across crop types and surface conditions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN17781
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-09
    Description: The latest generation of geostationary satellites carry sensors such as the Advanced Baseline Imager (GOES-16/17) and the Advanced Himawari Imager (Himawari-8/9) that closely mimic the spatial and spectral characteristics of MODIS and VIIRS, useful for monitoring land surface conditions. The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort among scientists from NASA and NOAA exploring the feasibility of producing operational land surface products similar to those from MODIS/VIIRS. The team built a processing pipeline called GEONEX that is capable of converting raw geostationary data into routine products of Fires, surface reflectances, vegetation indices, LAI/FPAR, ET and GPP/NPP using algorithms adapted from both NASA/EOS and NOAA/GOES-R programs. The GEONEX pipeline has been deployed on Amazon Web Services cloud platform and it currently leverages near-realtime geostationary data hosted in AWS public datasets under a NOAA-AWS agreement. Initial analyses of various products from ABI/AHI sensors suggest that they are comparable to those from MODIS in representing the spatio-temporal dynamics of land conditions. Cloud computing offers a variety of options for deploying the GEONEX pipeline including choice CPUs, storage media, and automation. By making the GEONEX pipeline available on the cloud, we hope to engage a broad community of Earth scientists from around the world in utilizing this new source of data for Earth monitoring.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN70172 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-26
    Description: Space-based observations offer a unique opportunity to investigate the atmosphere and its changes over decadal time scales, particularly in regions lacking in situ and/or ground based observations. In this study, we investigate temporal and spatial variability of atmospheric particulate matter (aerosol) over the urban area of Crdoba (central Argentina) using over ten years (20032015) of high-resolution (1 km) satellite-based retrievals of aerosol optical depth (AOD). This fine resolution is achieved exploiting the capabilities of a recently developed inversion algorithm (Multiangle implementation of atmospheric correction, MAIAC) applied to the MODIS sensor datasets of the NASA-Terra and -Aqua platforms. Results of this investigation show a clear seasonality of AOD over the investigated area. This is found to be shaped by an intricate superposition of aerosol sources, acting over different spatial scales and affecting the region with different yearly cycles. During late winter and spring (August-October), local as well as near- and long-range transported biomass burning (BB) aerosols enhance the Crdoba aerosol load, and AOD levels reach their maximum values (〉0.35 at 0.47 m). The fine AOD spatial resolution allowed to disclose that, in this period, AOD maxima are found in the rural/agricultural area around the city, reaching up to the city boundaries pinpointing that fires of local and near-range origin play a major role in the AOD enhancement. A reverse spatial AOD gradient is found from December to March, the urban area showing AODs 4080% higher than in the city surroundings. In fact, during summer, the columnar aerosol load over the Crdoba region is dominated by local (urban and industrial) sources, likely coupled to secondary processes driven by enhanced radiation and mixing effects within a deeper planetary boundary layer (PBL). With the support of modelled AOD data from the Modern-Era Retrospective Analysis for Research and Application (MERRA), we further investigated into the chemical nature of AOD. The results suggest that mineral dust is also an important aerosol component in Crdoba, with maximum impact from November to February. The use of a long-term dataset finally allowed a preliminary assessment of AOD trends over the Crdoba region. For those months in which local sources and secondary processes were found to dominate the AOD (December to March), we found a positive AOD trend in the Crdoba outskirts, mainly in the areas with maximum urbanization/population growth over the investigated decade. Conversely, a negative AOD trend (up to 0.1 per decade) is observed all over the rural area of Crdoba during the BB season, this being attributed to a decrease of fires both at the local and the continental scale.
    Keywords: Geophysics; Inorganic, Organic and Physical Chemistry
    Type: GSFC-E-DAA-TN63231 , ISPRS Journal of Photogrammetry and Remote Sensing (ISSN 0924-2716) (e-ISSN 1872-8235); 145 Part B; 250-267
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-28
    Description: Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (〉50%) of the TEMPO field of regard can be snow covered in January, and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered. We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93%, precision of 87%, recall of 83%). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90% for Aqua and Terra), but underestimated the presence of snow (recall of 74% for Aqua, 75% for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51%, recall of 43% for Aqua; precision of 69%, recall of 45% for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83%) but missed a significant number of snow-covered pixels (recall of 45%). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91%, precision of 79%, recall of 82%). We use the F score, which balances precision and recall, to determine overall product performance (F = 85%, 82(82)%, 81%, 58%, 46(54)% for IMS, MAIAC Aqua(Terra), CMC, NISE, MODIS Aqua(Terra) respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN59581 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 5; 2983-2994
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN43622 , Journal of the Air and Waste Management Association (ISSN 1096-2247) (e-ISSN 2162-2906); 67; 1; 53-63
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...