ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data. from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed. MAIAC shows extended coverage over parts of the continent when compared to VIIRS, owing to its pixel selection process and ability to retrieve aerosol information over brighter surfaces. To estimate data accuracy, both products are compared with AERONET Level 2 measurements to determine the amount of error present and discover if there is any dependency on viewing geometry and/or surface characteristics. Results suggest that MAIAC performs well over this region with a relatively small bias of -0.01; however there is a tendency for greater negative biases over bright surfaces and at larger scattering angles. Additional analysis over an expanded area and longer time period are likely needed to determine a comprehensive assessment of the products capability over the Western Hemisphere. and meet the levels of accuracy needed for aerosol monitoring.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN39705 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 5; 3005–3022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN46453 , Remote Sensing (ISSN 2072-4292); 9; 1; 48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We discuss accuracy of our recently developed RT code SORD using 2 benchmark scenarios published by the IPRT group in 2015. These scenarios define atmospheres with a complicate dependence of scattering and absorption properties over height (profile). Equal step, dh=1km, is assumed in the profiles. We developed subroutines that split such atmospheres into layers of the same optical thickness, d tau. We provide full text of the subroutines with comments in Appendix. The d tau is a step for vertical integration in the method of successive orders. Modification of the input profiles from "equal step over h" to "equal step over tau" changes input for RT simulations. This may cause errors at or above the acceptable level of the measurement uncertainty. We show errors of the RT code SORD for both intensity and polarization. In addition to that, using our discrete ordinates RT code IPOL, we discuss one more IPRT scenario, in which changes in height profile indeed cause unacceptable errors. Clear understanding of source and magnitude of these errors is important, e.g. for the AERONET retrieval algorithm. SORD is available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B/ or by email request from the first author.
    Keywords: Computer Programming and Software; Geophysics
    Type: GSFC-E-DAA-TN51045 , SPIE Remote Sensing; Sep 26, 2016 - Sep 29, 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X) (e-ISSN 1996-756X); 10001; 100010B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN33708 , MODIS VIIRS 2016 Science Team Meeting; Jun 06, 2016 - Jun 10, 2016; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-11
    Description: Long-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm is applied to Moderate Resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55microm) over both land and ocean, and an ngstrm exponent (AE derived from 0.55 and 0.86microm) over ocean. Here, we analyze the overlapping time series (since mid-2002) of the Collection 6 (C6) aerosol products. Global monthly mean AOD from MOD04 (Terra with morning overpass) is consistently higher than MYD04 (Aqua with afternoon overpass) by 13% (0.02 over land and 0.015 over ocean), and this offset (MOD04 - MYD04) has seasonal as well as long-term variability. Focusing on 2008 and deriving yearly gridded mean AOD and AE, we find that, over ocean, the MOD04 (morning) AOD is higher and the AE is lower. Over land, there is more variability, but only biomass-burning regions tend to have AOD lower for MOD04. Using simulated aerosol fields from the Goddard Earth Observing System (GEOS-5) Earth system model and sampling separately (in time and space) along each MODIS-observed swath during 2008, the magnitudes of morning versus afternoon offsets of AOD and AE are smaller than those in the C6 products. Since the differences are not easily attributed to either aerosol diurnal cycles or sampling issues, we test additional corrections to the input reflectance data. The first, known as C6+, corrects for long-term changes to each sensor's polarization sensitivity and the response versus the scan angle and to cross-calibration from MODIS-T to MODIS-A. A second convolves the detrending and cross-calibration into scaling factors. Each method was applied upstream of the aerosol retrieval using 2008 data. While both methods reduced the overall AOD offset over land from 0.02 to 0.01, neither significantly reduced the AOD offset over ocean. The overall negative AE offset was reduced. A collection (C6.1) of all MODIS Atmosphere products was released, but we expect that the C6.1 aerosol products will maintain similar overall AOD and AE offsets. We conclude that (a) users should not interpret global differences between Terra and Aqua aerosol products as representing a true diurnal signal in the aerosol. (b) Because the MODIS-A product appears to have an overall smaller bias compared to ground-truth data, it may be more suitable for some applications. However (c), since the AOD offset is only 0.02 and within the noise level for single retrievals, both MODIS products may be adequate for most applications.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN58973 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 7; 4073-4092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN41824 , International Journal of Applied Earth Observations and Geoinformation (ISSN 0303-2434); 52; 42-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r(exp 2)= 0.54, RMSE= 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy(0.52 less than or equal to r(exp 2) less than or equal to 0.61; p less than 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (sigma(sup 0)) from SeaWinds/QuikSCAT presented an r(exp 2) of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN41833 , Internatational Journal of Applied Earth Observation and Geoinformation (ISSN 0303-2434); 52; 580-590
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present a new open source polarized radiative transfer code SORD written in Fortran 9095. SORD numerically simulates propagation of monochromatic solar radiation in a plane-parallel atmosphere over a reflecting surface using the method of successive orders of scattering (hence the name). Thermal emission is ignored. We did not improve the method in any way, but report the accuracy and runtime in 52 benchmark scenarios. This paper also serves as a quick start users guide for the code available from ftp:maiac.gsfc.nasa.govpubskorkin, from the JQSRT website, or from the corresponding (first) author.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN43089 , Journal of Quantitative Spectroscopy and Radiative Transfer (ISSN 0022-4073); 200; 295-310
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...