ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-08
    Description: Approaches to optimize the adhesive joint strength between shape memory alloy ribbons and carbon fiber-reinforced epoxy composites were investigated for potential use as either an actuating structure or a dampening composite for structural applications. The interfacial bond strength between nickel-titanium (NiTi) and a polymer matrix composite (PMC) was measured by double lap shear testing as a function of NiTi surface treatment and adhesive material. The effect of NiTi surface treatment on damping was investigated using dynamic mechanical analysis. Lap shear data show that treating the surfaces of NiTi ribbons by light sandblasting and primer application increased the interfacial bond strength by 20 percent over the baseline composite structure. Lap shear data also reveal that out of three different film adhesives investigated, samples bonded with AF 191U and Hysol 9696U display the highest adhesive joint strengths. Optical microscopy reveals that most samples failed by either cohesive failure within the adhesive or by adhesive failure at either the adhesive/PMC or NiTi/adhesive interface. Adhering NiTi to the PMC did not appear to negatively impact damping performance; however, a more thorough examination into NiTi's role on vibration damping should be investigated.
    Keywords: Composite Materials
    Type: NASA/TM-2018-219906 , E-19523 , GRC-E-DAA-TN54786
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom PR520, a toughened resin, Hercules 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.
    Keywords: Composite Materials
    Type: GRC-E-DAA-TN33897 , American Society for Composites Technical Conference; Sep 19, 2016 - Sep 22, 2016; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...