ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • B-parental care  (1)
  • IPCC  (1)
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Soceity B Biological Sciences 284 (2017): 20170397, doi:10.1098/rspb.2017.0397.
    Description: One of the predicted consequences of climate change is a shift in body mass distributions within animal populations. Yet body mass, an important component of the physiological state of an organism, can affect key life-history traits and consequently population dynamics. Over the past decades, the wandering albatross—a pelagic seabird providing bi-parental care with marked sexual size dimorphism—has exhibited an increase in average body mass and breeding success in parallel with experiencing increasing wind speeds. To assess the impact of these changes, we examined how body mass affects five key life-history traits at the individual level: adult survival, breeding probability, breeding success, chick mass and juvenile survival. We found that male mass impacted all traits examined except breeding probability, whereas female mass affected none. Adult male survival increased with increasing mass. Increasing adult male mass increased breeding success and mass of sons but not of daughters. Juvenile male survival increased with their chick mass. These results suggest that a higher investment in sons by fathers can increase their inclusive fitness, which is not the case for daughters. Our study highlights sex-specific differences in the effect of body mass on the life history of a monogamous species with bi-parental care.
    Description: This study is supported by the Swiss National Science Foundation project grant no. 31003A_146445 and the ERC Starting Grant no. 337785 to A.O., and is a contribution to the Program EARLYLIFE funded by an ERC Advanced Grant under the European Community’s Seven Framework Program FP7/2007-2013 (ERC- 2012-ADG_20120314 to H.W.). The long-term demographic study at Crozet was supported by the French Polar Institute IPEV (programme no. 109 to H.W.). S.J. acknowledges support from NSF project no.1246407.
    Keywords: Wandering albatross ; B-parental care ; Sexual dimorphism ; Survival ; Reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences 372 (2017): 2016.0143, doi: 10.1098/rstb.2016.0143.
    Description: Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log(λs) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log(λs) compared to changes in mean. By contrast, the mean had a positive impact on log(λs). The historical SST mean was lower than the optimal SST value for which log(λs) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This ‘climate safety margin’ (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log(λs), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.
    Description: Work carried out at Canyon des Sourcils Noirs was supported by Institut Paul Emile Victor (IPEV program no.109) and Terres Australes et Antarctiques Françaises. S.J. thanks support from NSF-Antarctic Sciences Division (project no. 1246407), the Grayce B. Kerr Fund and the Penzance Endowed Fund in Support of Assistant Scientists. D.P. PhD was supported by a grant from the French Research Minister CNRS-INEE.
    Keywords: Age ; Climate change ; IPCC ; Matrix population model ; Sensitivity analysis ; Survival
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...