ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic  (2)
  • Estuaries  (2)
  • Ocean  (2)
  • 2015-2019  (5)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2735-2768, doi:10.1175/JPO-D-15-0134.1.
    Description: In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.
    Description: The data collection and analysis was funded by NSF Grants ARC-0909373, OCE-113008, and OCE-1434041.
    Keywords: Geographic location/entity ; Estuaries ; Glaciers ; Circulation/ Dynamics ; Coastal flows ; Atm/Ocean Structure/ Phenomena ; Freshwater ; Snowmelt/icemelt ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 675-717, doi:10.1002/2015JG003140.
    Description: The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.
    Description: World Climate Research Program-Climate and Cryosphere (WCRP-CliC); Arctic Monitoring and Assessment Program (AMAP) International Arctic Science Committee (IASC); Norwegian Ministries of Environment and of Foreign Affairs; Swedish Secretariat for Environmental Earth System Sciences (SSEESS); Swedish Polar Research Secretariat; NSF Grant Numbers: OCE 1130008, 1249133, AON-1203473, AON-1338948, OCE 1434041; Polar Research Programme of the Norwegian Research Council Grant Number: 226415
    Keywords: Arctic ; Oceans ; Circulation ; Freshwater ; Carbon cycle ; Acidification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1367-1373, doi:10.1175/JPO-D-17-0185.1.
    Description: An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.
    Description: A. F. was supported by NA14OAR4320106 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. C. C. was supported by NSF OCE-1658079 and F. S. was supported by NSF OCE-1657601 and NSF PLR-1743693.
    Description: 2018-12-12
    Keywords: Ocean ; Antarctica ; Arctic ; Laboratory/physical models ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8670–8688, doi:10.1002/2016JC011764.
    Description: Discharge of surface-derived meltwater at the submerged base of Greenland's marine-terminating glaciers creates subglacial discharge plumes that rise along the glacier/ocean interface. These plumes impact submarine melting, calving, and fjord circulation. Observations of plume properties and dynamics are challenging due to their proximity to the calving edge of glaciers. Therefore, to date information on these plumes has been largely derived from models. Here we present temperature, salinity, and velocity data collected in a plume that surfaced at the edge of Saqqarliup Sermia, a midsized Greenlandic glacier. The plume is associated with a narrow core of rising waters approximately 20 m in diameter at the ice edge that spreads to a 200 m by 300 m plume pool as it reaches the surface, before descending to its equilibrium depth. Volume flux estimates indicate that the plume is primarily driven by subglacial discharge and that this has been diluted in a ratio of 1:10 by the time the plume reaches the surface. While highly uncertain, meltwater fluxes are likely 2 orders of magnitude smaller than the subglacial discharge flux. The overall plume characteristics agree with those predicted by theoretical plume models for a convection-driven plume with limited influence from submarine melting.
    Description: National Science Foundation (NSF) Grant Numbers: PLR-1418256 , OCE-1434041; Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI) Arctic Research Initiative OCCI; National Aeronautics and Space Administration Grant Number: NNX10AN83H
    Description: 2017-06-15
    Keywords: Greenland ; Glacier ; Fjord ; Ice ; Ocean ; Plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...