ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 9 (2018): 838, doi: 10.3389/fphys.2018.00838.
    Description: Bottlenose dolphins (Tursiops truncatus) are highly versatile breath-holding predators that have adapted to a wide range of foraging niches from rivers and coastal ecosystems to deep-water oceanic habitats. Considerable research has been done to understand how bottlenose dolphins manage O2 during diving, but little information exists on other gases or how pressure affects gas exchange. Here we used a dynamic multi-compartment gas exchange model to estimate blood and tissue O2, CO2, and N2 from high-resolution dive records of two different common bottlenose dolphin ecotypes inhabiting shallow (Sarasota Bay) and deep (Bermuda) habitats. The objective was to compare potential physiological strategies used by the two populations to manage shallow and deep diving life styles. We informed the model using species-specific parameters for blood hematocrit, resting metabolic rate, and lung compliance. The model suggested that the known O2 stores were sufficient for Sarasota Bay dolphins to remain within the calculated aerobic dive limit (cADL), but insufficient for Bermuda dolphins that regularly exceeded their cADL. By adjusting the model to reflect the body composition of deep diving Bermuda dolphins, with elevated muscle mass, muscle myoglobin concentration and blood volume, the cADL increased beyond the longest dive duration, thus reflecting the necessary physiological and morphological changes to maintain their deep-diving life-style. The results indicate that cardiac output had to remain elevated during surface intervals for both ecotypes, and suggests that cardiac output has to remain elevated during shallow dives in-between deep dives to allow sufficient restoration of O2 stores for Bermuda dolphins. Our integrated modeling approach contradicts predictions from simple models, emphasizing the complex nature of physiological interactions between circulation, lung compression, and gas exchange.
    Description: AF (N00014-17-1-2756), PT (N000141512553) and FHJ (N00014-14-1-0410) were supported by the Office of Naval Research, and FHJ by an AIASCOFUND fellowship from Aarhus Institute of Advanced Studies, Aarhus University, under EU's FP7 program (Agreement No. 609033). PT received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged.
    Keywords: Diving physiology ; Modeling and simulations ; Gas exchange ; Marine mammals ; Decompression sickness ; Blood gases ; Hypoxia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 9 (2018): 886, doi:10.3389/fphys.2018.00886.
    Description: Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.
    Description: Funding for this project was provided by the Office of Naval Research (ONR YIP Award No. N000141410563, and Dolphin Quest, Inc. FHJ was supported by the Office of Naval Research (Award No. N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7 program of the EU (Agreement No. 609033).
    Keywords: Lung mechanics ; Total lung capacity ; Field metabolic rate ; Energetics ; Minimum air volume ; Diving physiology ; Marine mammals ; Spirometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Royal Society Open Science 5 (2018): 171280, doi:10.1098/rsos.171280.
    Description: We measured respiratory flow rates, and expired O2 in 32 (2–34 years, body mass [Mb] range: 73–291 kg) common bottlenose dolphins (Tursiops truncatus) during voluntary breaths on land or in water (between 2014 and 2017). The data were used to measure the resting O2 consumption rate (V˙O2, range: 0.76–9.45ml O2min−1 kg−1) and tidal volume (VT, range: 2.2–10.4 l) during rest. For adult dolphins, the resting VT, but not V˙O2, correlated with body mass (Mb, range: 141–291 kg) with an allometric mass-exponent of 0.41. These data suggest that the mass-specific VT of larger dolphins decreases considerably more than that of terrestrial mammals (mass-exponent: 1.03). The average resting sV˙O2 was similar to previously published metabolic measurements from the same species. Our data indicate that the resting metabolic rate for a 150 kg dolphin would be 3.9 ml O2 min−1 kg−1, and the metabolic rate for active animals, assuming a multiplier of 3–6, would range from 11.7 to 23.4 ml O2 min−1 kg−1.
    Description: Funding for this project was provided by the Office of Naval Research (ONR YIP Award # N000141410563, Dolphin Quest, Inc., and Woods Hole Oceanographic Institution.
    Keywords: Field metabolic rate ; Pulmonary function test ; Tidal volume ; Diving physiology ; Marine mammals ; Spirometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-19
    Description: Author(s): Samuel B. Roland, Bibhushan Shakya, and James D. Wells Recent measurements of PeV energy neutrinos at IceCube and a 3.5 keV x-ray line in the spectra of several galaxies are both tantalizing signatures of new physics. This paper shows that one or both of these observations can be explained within an extended supersymmetric neutrino sector. Obtaining lig… [Phys. Rev. D 92, 095018] Published Wed Nov 18, 2015
    Keywords: Beyond the Standard Model
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-29
    Description: Author(s): Zygmunt Lalak, Marek Lewicki, and James D. Wells We consider an extension of the minimal supersymmetric standard model (MSSM) with an added vectorlike top partner. Our aim is to revisit to what extent such an extension can raise the Higgs boson mass through radiative corrections and help ameliorate the MSSM hierarchy problem, and to specify what e... [Phys. Rev. D 91, 095022] Published Wed May 27, 2015
    Keywords: Beyond the Standard Model
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-23
    Description: Author(s): Sebastian A. R. Ellis and James D. Wells Tests of gauge coupling unification require knowledge of thresholds between the weak scale and the high scale of unification. If these scales are far separated, as is the case in most unification scenarios considered in the literature, the task can be factorized into IR and UV analyses. We advocate ... [Phys. Rev. D 91, 075016] Published Wed Apr 22, 2015
    Keywords: Beyond the Standard Model
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...