ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Water masses  (2)
  • Alongshore advection  (1)
  • 2015-2019  (3)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004.
    Description: The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months.
    Description: The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
    Keywords: Coastal Red Sea ; Temperature ; Salinity ; Time series ; Seasonality ; Alongshore advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: From 1974 through 1978 a series of intensive measurements were made in the coastal waters within 12 km of Long Island. The data were derived from two sources: a mooring array from which time series of temperature, salinity and water velocity were measured at four depths at each of four offshore distances; and high resolution, daily hydrographic surveys. Analysis of subtidal cross-shore velocity fluctuations has indicated a two-layer response to wind forcing, with near-surface flow to the right of the longshore wind and opposing flow below. The magnitude of these fluctuations increased in the seaward direction on a scale nearly equal to the internal deformation radius. The phase between longshore velocity fluctuations and longshore wind stress approached zero with decreasing bottom depth, probably the result of bottom stress. The vertical structure of longshore fluctuations during stratified conditions markedly differed from that during unstratified conditions, and resembled the structure derived from a simple two-layer coastal flow model. Significant mean offshore flow was measured during experiments in August and September, despite negligible mean wind stress during the same periods. This flow was most likely due to persistent longshore density gradients, as are consistently inferred from hydrographic data taken in the vicinity.
    Description: Funding was provided by the Department of Energy under contract DE-AC02-79EV10005.
    Keywords: Water masses ; Ocean temperature ; Salinity ; Boundary layer ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: From 1974 through 1978 intensive measurements were made of the salinity, temperature and current structure of the waters within 12 km of the Southern Long Island coastline. The data were derived from two sources: a mooring array from which time series of temperature, salinity and water velocity were measured at four depths at each of four offshore distances; and high resolution, daily STD and current meter surveys. During August and September intrusions of slope or outer shelf water were often observed by the STD surveys. Three intrusions have been studied in detail. Two were observed at mid-depth following periods of upwelling favorable winds. Concurrent hydrographic and current meter data suggest that these water masses were transported shoreward by a combination of wind forcing and longshore density gradients. The third intrusion, initially observed near the surface, had coinciding salinity and temperature maxima. This water mass appears to have entered the shelf as a result of a shelf/slope water exchange, possibly induced by a warm-core ring near the shelf break. Such intrusions may commonly occur during the summer and fall and may be related to the appearance of tropical fish in the Long Island vicinity during these seasons.
    Description: Funding was provided by the Department of Energy under contract DE-AC02-79EV10005.
    Keywords: Water masses ; Ocean temperature ; Salinity ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...