ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ABC transporters  (1)
  • NFE2L2  (1)
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Free Radical Biology and Medicine 88B (2015): 275-289, doi:10.1016/j.freeradbiomed.2015.06.022.
    Description: Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
    Description: This work was supported in part by National Institutes of Health grants R01ES016366 (MEH), R01ES015912 (JJS), and F32ES017585 (ART-L).
    Description: 2016-06-28
    Keywords: Oxidative stress ; NRF2 ; NFE2L2 ; Embryo ; Zebrafish ; Development
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 115 (2017): 352-361, doi:10.1016/j.marpolbul.2016.12.012.
    Description: Pterygoplichthys is a genus of related suckermouth armoured catfish native to South America that has invaded tropical and subtropical regions worldwide. Physiological features, including an augmented resistance to organic xenobiotics, may have aided their settlement in foreign habitats. The liver transcriptome of Pterygoplichthys anisitsi was sequenced and used to characterize the diversity of mRNAs potentially involved in the responses to natural and anthropogenic chemicals. In total, 66,642 transcripts were assembled. Among the identified defensome genes, cytochromes P450 (CYP) were the most abundant, followed by nuclear receptors (NR), sulfotransferases (SULT) and ATP binding cassette transporters (ABC). A novel expansion in the CYP2Y subfamily was identified, as well as an independent expansion of the CYP2AAs. Two expansions were also observed among SULT1. Thirty-nine transcripts were classified into twelve subfamilies of NR, while 21 encoded ABC transporters. The diversity of defensome transcripts sequenced herein could contribute to this species resistance to organic xenobiotics.
    Description: This study was supported by a PEER grant from USAID (PGA-2000003446 and PGA-2000004790) associated with NSF grant DEB-1120263. T.E.P, D.A.M, and M.G.P.M receives independent fellowships from the Brazilian funding agency CAPES.
    Keywords: RNA-Seq ; P450 ; SULT ; ABC transporters ; Nuclear Receptors
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...