ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cryoelectron Microscopy  (2)
  • 405; Center for Marine Environmental Sciences; Comment; DEPTH, sediment/rock; Gas chromatography; GC; GeoB13824-1; Gravity corer; M78/3A; MARUM; Meteor (1986); Methane
  • 2015-2019  (3)
  • 1
    Publication Date: 2015-07-15
    Description: Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dodonova, S O -- Diestelkoetter-Bachert, P -- von Appen, A -- Hagen, W J H -- Beck, R -- Beck, M -- Wieland, F -- Briggs, J A G -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):195-8. doi: 10.1126/science.aab1121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Heidelberg University Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany. Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. john.briggs@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160949" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/chemistry ; COP-Coated Vesicles/*chemistry ; Coat Protein Complex I/*chemistry ; Cryoelectron Microscopy ; Electron Microscope Tomography ; GTPase-Activating Proteins/chemistry ; Humans ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-02
    Keywords: 405; Center for Marine Environmental Sciences; Comment; DEPTH, sediment/rock; Gas chromatography; GC; GeoB13824-1; Gravity corer; M78/3A; MARUM; Meteor (1986); Methane
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-16
    Description: Nuclear pore complexes (NPCs) are 110-megadalton assemblies that mediate nucleocytoplasmic transport. NPCs are built from multiple copies of ~30 different nucleoporins, and understanding how these nucleoporins assemble into the NPC scaffold imposes a formidable challenge. Recently, it has been shown how the Y complex, a prominent NPC module, forms the outer rings of the nuclear pore. However, the organization of the inner ring has remained unknown until now. We used molecular modeling combined with cross-linking mass spectrometry and cryo-electron tomography to obtain a composite structure of the inner ring. This architectural map explains the vast majority of the electron density of the scaffold. We conclude that despite obvious differences in morphology and composition, the higher-order structure of the inner and outer rings is unexpectedly similar.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kosinski, Jan -- Mosalaganti, Shyamal -- von Appen, Alexander -- Teimer, Roman -- DiGuilio, Amanda L -- Wan, William -- Bui, Khanh Huy -- Hagen, Wim J H -- Briggs, John A G -- Glavy, Joseph S -- Hurt, Ed -- Beck, Martin -- 1R21AG047433-01/AG/NIA NIH HHS/ -- R21 AG047433/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):363-5. doi: 10.1126/science.aaf0643.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. ; Biochemistry Center of Heidelberg University, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany. ; Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 507 River Street, Hoboken, NJ 07030, USA. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081072" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cryoelectron Microscopy ; Electron Microscope Tomography ; HeLa Cells ; Humans ; Mass Spectrometry ; Models, Molecular ; Nuclear Matrix/metabolism/ultrastructure ; Nuclear Pore/*metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...