ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (40)
  • 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations  (25)
  • Volcano monitoring  (24)
  • Mt. Etna  (8)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (7)
  • Vesuvio  (7)
  • 2015-2019  (40)
  • 1
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: In the framework of the UPStrat-MAFA project, a seismic hazard assessment has been undertaken in the volcanic region of Mt. Etna as a first step in studies aimed at evaluating the risk on an urban scale. The analysis has been carried out with the SASHA code which uses macroseismic data in order to calculate, starting from the site seismic history, the maximum intensity value expected in a given site with a probability of exceedance of 10 % (Iref), for a fixed exposure time. Depending on the aims of the project, hazard is estimated for local volcano-tectonic seismicity and short exposure times (10 and 30 years), without taking into account the contribution of ‘‘regional’’ events characterized by much longer recurrence times. Results from tasks A, B and D of the project have produced an updated macroseismic dataset, better performing attenuation models and new tools for SASHA, respectively. The maps obtained indicate that the eastern flank of Etna, the most urbanized sector of the volcano, is characterized by a high level of hazard with Iref values up to degree VIII EMS, and even IX EMS locally. The disaggregated data analysis allows recognizing the ‘‘design earthquake’’ and the seismogenic fault which most contribute to the hazard at a site-scale. The latter analysis is the starting point to select the scenario earthquake to be used in the analyses of tasks C and F of the project dealing with, respectively, synthetic ground motion simulations and the evaluation of the Disruption Index.
    Description: Published
    Description: 1813–1825
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano-tectonic earthquakes ; Macroseismic intensity ; Seismic history ; Attenuation models ; Exceedance probability ; Seismic hazard ; Mt. Etna ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: INGV - Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: open
    Keywords: Campi Flegrei ; Gravity changes ; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: INGV - Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: open
    Keywords: Vesuvio ; Gravity changes ; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: As well known, measurements of the time-space changes of the gravity field are a powerful approach to detect the masses change/redistribution in the underground, such as those at volcanoes. The most common approach to detect gravity precursory signals is the use of repeated relative measurements at benchmarks on networks. This is very good, but has some and significant limits: 1) the networks must be linked to a reference station stable over long time and if possible external to the active area. This is quite simply for land volcanoes, but is generally difficult for volcanoes on islands, particularly when far from the terra firma; 2) to reach high precision, measurements require special operative procedure implying long time surveys; 3) relative gravity changes can be affected over the long-time by changes of instrumental sensitivity and loss of vacuum in the air-tight sealing system, therefore the instruments must be subject to continuous check. Measurements on network have the advantage to permit to define the position and the geometry of the masses change/redistribution, even if they suffer from the lack of information about the rate and/or quick changes, since variations are assumed linearly changing over the time between two consecutive surveys, usually spaced out some months or years. This is a fundamental information in the prediction of the volcanic activity changes and/or of volcanic eruptions and leads to conclude that measurements on networks cannot be excluded from a monitoring program, but moving toward absolute methodologies is advisable. Nowadays, and since some years, this is possible due to the commercially availability of a portable field absolute gravimeter (Micro-g_LaCoste A10), which we acquired at the end of 2014. The main advantages of the absolute measurements on networks are: i) they are independent from any reference and the field operation are faster and easier, permitting much frequent measurements and reducing the lack of information between two consecutive surveys; ii) they are directly linked to standards of time and length therefore fairly independent from instrumental references and drift, avoiding loss of long-term information; iii) the measured value can be used without loop reductions, post processing and benchmark links. This can be translated into large advantages, such as saving of human resources, survey’s time and costs. Before to start field surveys, we carried out several measurements to test the performances of the instrument and mainly to verify the repeatability of the measured value. The test was performed at the Old Building of the Osservatorio Vesuviano, on Mount Vesuvio, that is a very low noised and good logistic site; it is one of the absolute stations installed in 80’s in the Neapolitan area which value has been measured several time till 2010. In June 2015, starting from Campi Flegrei, we set the first absolute gravity networks on the Neapolitan volcanoes, formed by stations coinciding or close to the benchmarks of the already existing relative networks. Here we present and discuss the data collected during the test and the field surveys; we also will describe the new absolute networks.
    Description: Unpublished
    Description: Naples (Italy)
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: open
    Keywords: Absolute gravimetry ; Neapolitan Volcanoes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The persistent volcanic activity of Mt Etna makes the continuous monitoring of multidisciplinary data a first-class issue. Indeed, the monitoring systems rapidly accumulate huge quantity of data, arising specific problems of an- dling and interpretation. In order to respond to these problems, the INGV staff has developed a number of software tools for data mining. These tools have the scope of identifying structures in the data that can be related to volcanic activity, furnishing criteria for the identification of precursory scenarios. In particular, we use methods of clustering and classification in which data are divided into groups according to a- priori-defined measures of similarity or distance. Data groups may assume various shapes, such as convex clouds or complex concave bodies.The “KKAnalysis” software package is a basket of clustering methods. Currently, it is one of the key techniques of the tremor-based automatic alarm systems of INGV Osservatorio Etneo. It exploits both Self-Organizing Maps and Fuzzy Clustering. Beside seismic data, the software has been applied to the geo- chemical composition of eruptive products as well as a combined analysis of gas-emission (radon) and seismic data. The “DBSCAN” package exploits a concept based on density-based clustering. This method allows discovering clusters with arbitrary shape. Clusters are defined as dense regions of objects in the data space separated by re- gions of low density. In DBSCAN a cluster grows as long as the density within a group of objects exceeds some threshold. In the context of volcano monitoring, the method is particularly promising in the recognition of ash par- ticles as they have a rather irregular shape. The “MOTIF” software allows us to identify typical waveforms in time series, outperforming methods like cross-correlation that entail a high computational effort. MOTIF can recognize the non-imilarity of two patterns on a small number of data points without going through the whole length of data vectors. All the developments aforementioned come along with modules for feature extraction and post-processing. Spe- cific attention is devoted to the obustness of the feature extraction to avoid misinterpretations due to the presence of disturbances from environmental noise or other undesired signals originating from the source, which are not relevant for the purpose of volcano surveillance.
    Description: Unpublished
    Description: Vienna (Austria)
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Etna, Data mining ; Self Organizing Map, Clustering methods ; Pattern classification ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: INGV - Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: Gravity changes ; Volcano monitoring ; Isola di Vulcano ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: INGV- Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: Campi Flegrei ; gravity changes ; Volcano monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: INGV - Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: open
    Keywords: Vesuvio ; Gravity changes ; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: INGV - Sezione di Napoli Osservatorio Vesuviano
    Description: Unpublished
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: open
    Keywords: Pantelleria ; Gravity changes ; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...