ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-15
    Description: The Dipolarization Front (DF), usually observed near the leading edge of a Bursty Bulk Flow (BBF), is thought to carry an intense current sufficient to modify the large-scale near-Earth magnetotail current system. However, the physical mechanism of the current generation associated with DFs is poorly understood. This is primarily due to the limitations of conventional plasma instruments which are unable to provide a sufficient number of unaliased 3D distribution functions on the timescale of the DF, which usually travels past a spacecraft in only a few seconds. It is thus almost impossible to unambiguously determine the detailed plasma structure of the DF at the usual temporal resolution of such instruments. Here we present detailed plasma measurements using the Cluster PEACE electron and CIS-CODIF ion data for an event during which it was possible to observe the full pitch angle distribution at a cadence of 1/4 second. The observations clearly show details of plasma sub-structure within the DF, including the presence of field-aligned electron beams. In this event, the current density carried by the electron beam is much larger than the current obtained from the curlometer method. We also suggest that the field-aligned current around the DF obtained from the curlometer method may have been misinterpreted in previous studies. Our results imply that the nature of the DF current system needs to be revisited using high resolution particle measurements, such as those observations shortly to be available from the Magnetospheric Multiscale (MMS) mission.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...