ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (1)
  • 2015-2019  (1)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-02-25
    Description: This study characterizes the hop-and-sink locomotion of Daphnia magna, a zooplankton species widely studied in a variety of biological fields. Time-resolved tomographic particle image velocimetry (tomo-PIV) is used to obtain 3D kinematics and flow field data with high spatial and temporal resolution. The kinematics data show that the daphniid’s velocity quickly increases during the power stroke, reaching maximum accelerations of 1000 body lengths/s2, then decelerates during the recovery stroke to a steady sinking speed. The hop-and-sink locomotion produces a viscous vortex ring located under each second antennae. These flow structures develop during the power stroke, strengthen during the recovery stroke, and then decay slowly during the sinking phase. The time records of vortex circulation are self-similar when properly normalized. The flow fields were successfully modeled using an impulsive stresslet, showing good agreement between the decay of circulation and a conceptual model of the impulse. While no relationships were found between kinematics or flow field parameters and body size, the total energy dissipated by the daphniid hop-and-sink motion was found to scale exponentially with the vortex strength.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...