ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (3)
  • Oxford University Press  (3)
  • 2015-2019  (3)
  • 1
    Publication Date: 2016-07-20
    Description: The Cadzow rank-reduction method can be effectively utilized in simultaneously denoising and reconstructing 5-D seismic data that depend on four spatial dimensions. The classic version of Cadzow rank-reduction method arranges the 4-D spatial data into a level-four block Hankel/Toeplitz matrix and then applies truncated singular value decomposition (TSVD) for rank reduction. When the observed data are extremely noisy, which is often the feature of real seismic data, traditional TSVD cannot be adequate for attenuating the noise and reconstructing the signals. The reconstructed data tend to contain a significant amount of residual noise using the traditional TSVD method, which can be explained by the fact that the reconstructed data space is a mixture of both signal subspace and noise subspace. In order to better decompose the block Hankel matrix into signal and noise components, we introduced a damping operator into the traditional TSVD formula, which we call the damped rank-reduction method. The damped rank-reduction method can obtain a perfect reconstruction performance even when the observed data have extremely low signal-to-noise ratio. The feasibility of the improved 5-D seismic data reconstruction method was validated via both 5-D synthetic and field data examples. We presented comprehensive analysis of the data examples and obtained valuable experience and guidelines in better utilizing the proposed method in practice. Since the proposed method is convenient to implement and can achieve immediate improvement, we suggest its wide application in the industry.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-24
    Description: A discontinuous grid finite-difference (FD) method with non-uniform time step Runge–Kutta scheme on curvilinear collocated-grid is developed for seismic wave simulation. We introduce two transition zones: a spatial transition zone and a temporal transition zone, to exchange wavefield across the spatial and temporal discontinuous interfaces. A Gaussian filter is applied to suppress artificial numerical noise caused by down-sampling the wavefield from the finer grid to the coarser grid. We adapt the non-uniform time step Runge–Kutta scheme to a discontinuous grid FD method for further increasing the computational efficiency without losing the accuracy of time marching through the whole simulation region. When the topography is included in the modelling, we carry out the discontinuous grid method on a curvilinear collocated-grid to obtain a sufficiently accurate free-surface boundary condition implementation. Numerical tests show that the proposed method can sufficiently accurately simulate the seismic wave propagation on such grids and significantly reduce the computational resources consumption with respect to regular grids.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-14
    Description: Inhomogeneous noise sources surrounding stations produce asymmetric amplitudes in cross-correlation functions that yield preferential source directions. Here we show that preprocessing biases the dominant source direction estimate towards the source producing long-duration signals by down-weighting high-amplitude signals. Tests with both synthetic data and observations show that conventional preprocessing, where only earthquakes and local transients (e.g. trawling, fish impacts) are removed, is more sensitive to coherent energy, while one-bit preprocessing and running-absolute-mean preprocessing are more influenced by signal duration. Comparisons between different preprocessing methods are made on data from the Cascadia Initiative ocean bottom seismometer array, where we find that the total energy arriving from pelagic and coastal areas is similar. Moreover, pelagic-generated signals tend to be weaker but have longer duration, in contrast to coastal-generated signals that tend to be stronger but have shorter duration.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...