ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (39)
  • Wiley  (29)
  • MDPI Publishing  (10)
  • 2015-2019  (39)
  • Geography  (23)
  • Medicine  (16)
Collection
  • Articles  (39)
Years
Year
Journal
  • 1
    Publication Date: 2015-05-06
    Description: An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p 〈 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer’s accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-14
    Description: Dam removal has been demonstrated as one of the most frequent and effective fluvial restoration actions but at most dam removals, especially of small dams, there has been little geomorphological monitoring. The results of the geomorphological monitoring implemented in two dams in Urumea and Leitzaran Rivers (northern Spain) are presented. The one from Urumea River, originally 3.5 m high, impounded 500 m of river course, was removed instantaneously whereas that in Leitzaran River, was 12.5 m high, impounded 1,500 m of river course, and it is in its second phase of a 4-stage removal process. Changes in channel morphology, sediment size and mobility and river bed morphologies were assessed. The monitoring included different techniques: topographical measurements of the channel, terrestrial laser scanner measurements of river bed and bars, sediment grain size and transport; all of them repeated in four (May, August, November 2011 and May 2012) and five (July and September 2013, April and August 2014 and June 2015 fieldwork campaigns in Urumea and Leitzaran Rivers, respectively. Geomorphic responses of both dam removals are presented, as well as compared between them. Morphological channel adjustments occurred mainly shortly after dam removals, but with differences among the one removed instantaneously, that was immediate, whereas that conducted by stages took longer. Degradational processes were observed upstream of both dams (up to 1.2 m and 4 m in Urumea and Leitzaran Rivers, respectively), but also aggradational processes (pool filling), upstream of Inturia dam (2.85 m at least). Less evident aggradational processes were observed downstream of the dams (up to 0.37 m and 0.50 m in Urumea and Leitzaran Rivers, respectively). Flood events, specially a 100-year one registered during the monitoring period of Mendaraz dam removal, reactivated geomorphological processes as incision and bank erosion, whereas longitudinal profile recovery, grain-size sorting and upstream erosion took longer. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-01
    Description: IJERPH, Vol. 15, Pages 887: Groundwater Flow Processes and Human Impact along the Arid US-Mexican Border, Evidenced by Environmental Tracers: The Case of Tecate, Baja California International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15050887 Authors: Jürgen Mahlknecht Luis Walter Daessle Maria Vicenta Esteller Juan Antonio Torres-Martinez Abrahan Mora With the increasing population, urbanization and industry in the arid area of Tecate, there is a concomitant increase in contaminants being introduced into the Tecate River and its aquifer. This contamination is damaging the usable groundwater supply and making local residents and commercial enterprises increasingly dependent on imported water from the Colorado River basin. In this study we apply a suite of chemical and isotopic tracers in order to evaluate groundwater flow and assess contamination trends. Groundwater recharge occurs through mountain-block and mountain-front recharge at higher elevations of the ranges. Groundwater from the unconfined, alluvial aquifer indicates recent recharge and little evolution. The increase in salinity along the flow path is due to interaction with weathering rock-forming silicate minerals and anthropogenic sources such as urban wastewater, residual solids and agricultural runoff from fertilizers, livestock manure and/or septic tanks and latrines. A spatial analysis shows local differences and the impact of the infiltration of imported waters from the Colorado River basin. The general trend of impaired water quality has scarcely been documented in the last decades, but it is expected to continue. Since the groundwater system is highly vulnerable, it is necessary to protect groundwater sources.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-22
    Description: IJERPH, Vol. 15, Pages 1031: Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System International Journal of Environmental Research and Public Health doi: 10.3390/ijerph15051031 Authors: Celia De La Mora-Orozco Irma Julieta González-Acuña Ruben Alfonso Saucedo-Terán Hugo Ernesto Flores-López Hector Osbaldo Rubio-Arias Jesús Manuel Ochoa-Rivero Pollutants from pig farms in Mexico have caused problems in many surface water reservoirs. Growing concern has driven the search for low-cost wastewater treatment solutions. The objective of this research was to evaluate the potential of an in-series constructed wetland to remove nutrients from wastewater from a pig farm. The wetland system had a horizontal flow that consisted of three cells, the first a surface water wetland, the second a sedimentation cell, and the third a subsurface flow wetland. The vegetation used was Thypa sp. and Scirpus sp. A mix of soil with red volcanic rock (10–30 mm diameter) and yellow sand (2–8 mm diameter) was used as a substrate for the vegetation. The experiments were carried out in duplicate. Water samples were collected at the inflow and outflow of the cells. Two hydraulic retention times (HRT) (5 and 10 days) and three treatments were evaluated: 400, 800, and 1200 mg·L−1 of chemical oxygen demand (COD) concentration. Data was collected in situ for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). COD, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3–N), and total phosphorous (TP) were analyzed in the laboratory. The results showed that the in-series constructed wetland is a feasible system for nutrient pollutant removal, with COD removal efficiency of 76% and 80% mg·L−1 for a 5- and 10-day HRT, respectively. The removal efficiency for TKN, NH3–N, and TP reached about 70% with a 5-day HRT, while a removal of 85% was obtained with a 10-day HRT. The wetland reached the maximum removal efficiency with a 10-day HRT and an inflow load of 400 mg·L−1 of organic matter. The results indicate that HRT positively affects removal efficiency of COD and TDS. On the other hand, the HRT was not the determining factor for TP removal. Treatment one, with an initial COD concentration of 400 mg·L−1, had the highest removal of the assessed pollutants, allowing for the use of water for irrigation according to Mexican regulatory standards (NOM-001). The water quality resulting from treatments two and three (T2 = 800 mg·L−1 of COD and T3 = 1200 mg·L−1 of COD) did not comply with minimal requirements for irrigation water.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-21
    Description: This paper presents analytical solutions of large-scale, zonally symmetric overturning circulations in the tropical free troposphere forced by transient diabatic heating in the off-equatorial intertropical convergence zone (ITCZ). The dynamics are discussed in the context of the time dependent meridional circulation equation arising in an equatorial $\beta$-plane model. The solutions of these differential equations contain terms for the slow, quasi-balanced part of the response and terms for the transient, zonally symmetric, inertia-gravity wave part of the response. When the off-equatorial (north of the equator) ITCZ diabatic heating is switched on at various rates, both parts of the response reveal a basic asymmetry between the southern and northern hemispheres, with the southern hemisphere side containing most of the quasi-balanced compensating subsidence and transient inertia-gravity wave activity. The inertia-gravity waves travel in wave packets that bounce off a spectrum of turning latitudes, and are analyzed in the context of an average conservation law approach. These traveling wave packets cause the mass flux in the southern and northern Hadley cells to pulsate on timescales of about one, two, and three days for diabatic heating of the external, first internal, and second internal vertical modes, respectively. The spectral characteristics of the vertical motion in the ITCZ and subsidence regions are slightly more complicated and depend on ITCZ location. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-17
    Description: Freshwater ecosystems are among the most threatened on Earth, facing environmental and anthropogenic pressures often surpassing their terrestrial counterparts. Land use and land cover change (LUCC) such as degradation and fragmentation of the terrestrial landscape negatively impacts aquatic ecosystems. Satellite imagery allows for an impartial assessment of the past to determine habitat alterations. It can also be used as a forecasting tool in the development of species conservation strategies through models based on ecological factors extracted from imagery. In this study, we analyze Landsat time sequences (1984–2015) to quantify LUCC around three freshwater ecosystems with endemic cichlids in Tanzania. In addition, we examine population growth, agricultural expansion, and climate change as stressors that impact the habitats. We found that the natural vegetation cover surrounding Lake Chala decreased from 15.5% (1984) to 3.5% (2015). At Chemka Springs, we observed a decrease from 7.4% to 3.5% over the same period. While Lake Natron had minimal LUCC, severe climate change impacts have been forecasted for the region. Subsurface water data from the Gravity Recovery and Climate Experiment (GRACE) satellite observations further show a decrease in water resources for the study areas, which could be exacerbated by increased need from a growing population and an increase in agricultural land use.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-18
    Description: Remote Sensing, Vol. 9, Pages 1059: Biodiversity Monitoring in Changing Tropical Forests: A Review of Approaches and New Opportunities Remote Sensing doi: 10.3390/rs9101059 Authors: Kalkidan Mulatu Brice Mora Lammert Kooistra Martin Herold Tropical forests host at least two-thirds of the world’s flora and fauna diversity and store 25% of the terrestrial above and belowground carbon. However, biodiversity decline due to deforestation and forest degradation of tropical forest is increasing at an alarming rate. Biodiversity dynamics due to natural and anthropogenic disturbances are mainly monitored using established field survey approaches. However, such approaches appear to fall short at addressing complex disturbance factors and responses. We argue that the integration of state-of-the-art monitoring approaches can improve the detection of subtle biodiversity disturbances and responses in changing tropical forests, which are often data-poor. We assess the state-of-the-art technologies used to monitor biodiversity dynamics of changing tropical forests, and how their potential integration can increase the detail and accuracy of biodiversity monitoring. Moreover, the relevance of these biodiversity monitoring techniques in support of the UNCBD Aichi targets was explored using the Essential Biodiversity Variables (EBVs) as a framework. Our review indicates that although established field surveys were generally the dominant monitoring systems employed, the temporal trend of monitoring approaches indicates the increasing application of remote sensing and in -situ sensors in detecting disturbances related to agricultural activities, logging, hunting and infrastructure. The relevance of new technologies (i.e., remote sensing, in situ sensors, and DNA barcoding) in operationalising EBVs (especially towards the ecosystem structure, ecosystem function, and species population classes) and the Aichi targets has been assessed. Remote sensing application is limited for EBV classes such as genetic composition and species traits but was found most suitable for ecosystem structure class. The complementarity of remote sensing and emerging technologies were shown in relation to EBV candidates such as species distribution, net primary productivity, and habitat structure. We also developed a framework based on the primary biodiversity attributes, which indicated the potential of integration between monitoring approaches. In situ sensors are suitable to help measure biodiversity composition, while approaches based on remote sensing are powerful for addressing structural and functional biodiversity attributes. We conclude that, synergy between the recent biodiversity monitoring approaches is important and possible. However, testing the suitability of monitoring methods across scales, integrating heterogeneous monitoring technologies, setting up metadata standards, and making interpolation and/or extrapolation from observation at different scales is still required to design a robust biodiversity monitoring system that can contribute to effective conservation measures.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-30
    Description: Remote Sensing, Vol. 10, Pages 687: Estimating Peatland Water Table Depth and Net Ecosystem Exchange: A Comparison between Satellite and Airborne Imagery Remote Sensing doi: 10.3390/rs10050687 Authors: Margaret Kalacska J. Pablo Arroyo-Mora Raymond J. Soffer Nigel T. Roulet Tim R. Moore Elyn Humphreys George Leblanc Oliver Lucanus Deep Inamdar Peatlands play a fundamental role in climate regulation through their long-term accumulation of atmospheric carbon. Despite their resilience, peatlands are vulnerable to climate change. Remote sensing offers the opportunity to better understand these ecosystems at large spatial scales through time. In this study, we estimated water table depth from a 6-year time sequence of airborne shortwave infrared (SWIR) hyperspectral imagery. We found that the narrowband index NDWI1240 is a strong predictor of water table position. However, we illustrate the importance of considering peatland anisotropy on SWIR imagery from the summer months when the vascular plants are in full foliage, as not all illumination conditions are suitable for retrieving water table position. We also model net ecosystem exchange (NEE) from 10 years of Landsat TM5 imagery and from 4 years of Landsat OLI 8 imagery. Our results show the transferability of the model between imagery from sensors with similar spectral and radiometric properties such as Landsat 8 and Sentinel-2. NEE modeled from airborne hyperspectral imagery more closely correlated to eddy covariance tower measurements than did models based on satellite images. With fine spectral, spatial and radiometric resolutions, new generation satellite imagery and airborne hyperspectral imagery allow for monitoring the response of peatlands to both allogenic and autogenic factors.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-07
    Description: Remote Sensing, Vol. 10, Pages 565: Airborne Hyperspectral Evaluation of Maximum Gross Photosynthesis, Gravimetric Water Content, and CO2 Uptake Efficiency of the Mer Bleue Ombrotrophic Peatland Remote Sensing doi: 10.3390/rs10040565 Authors: J. Arroyo-Mora Margaret Kalacska Raymond Soffer Tim Moore Nigel Roulet Sari Juutinen Gabriela Ifimov George Leblanc Deep Inamdar Peatlands cover a large area in Canada and globally (12% and 3% of the landmass, respectively). These ecosystems play an important role in climate regulation through the sequestration of carbon dioxide from, and the release of methane to, the atmosphere. Monitoring approaches, required to understand the response of peatlands to climate change at large spatial scales, are challenged by their unique vegetation characteristics, intrinsic hydrological complexity, and rapid changes over short periods of time (e.g., seasonality). In this study, we demonstrate the use of multitemporal, high spatial resolution (1 m2) hyperspectral airborne imagery (Compact Airborne Spectrographic Imager (CASI) and Shortwave Airborne Spectrographic Imager (SASI) sensors) for assessing maximum instantaneous gross photosynthesis (PGmax) in hummocks, and gravimetric water content (GWC) and carbon uptake efficiency in hollows, at the Mer Bleue ombrotrophic bog. We applied empirical models (i.e., in situ data and spectral indices) and we derived spatial and temporal trends for the aforementioned variables. Our findings revealed the distribution of hummocks (51.2%), hollows (12.7%), and tree cover (33.6%), which is the first high spatial resolution map of this nature at Mer Bleue. For hummocks, we found growing season PGmax values between 8 μmol m−2 s−1 and 12 μmol m−2 s−1 were predominant (86.3% of the total area). For hollows, our results revealed, for the first time, the spatial heterogeneity and seasonal trends for gravimetric water content and carbon uptake efficiency for the whole bog.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-30
    Description: Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl−, NO3, SO4, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...