ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (12)
  • Institute of Electrical and Electronics Engineers  (3)
  • 2015-2019  (15)
  • 1
    Publication Date: 2015-04-26
    Description: A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk Vp/Vs ratio by the H-k analysis of receiver functions. In the Damara Belt the crustal thickness is ~35 km with a Vp/Vs ratio of 〈1.75. The crust is ~30 km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and Vp/Vs ratios are found at the landfall of the Walvis Ridge. Here and at ~150 km northeast of the coast, the crustal thickness increases dramatically reaching 44 km and the Vp/Vs ratios are extremely high (~1.89). These anomalies are interpreted as magmatic underplating produced by the mantle-plume during the breakup of Gondwana. The area affected by the plume is smaller than 300 km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-19
    Description: Azimuthal anisotropy derived from multi-mode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths 〈100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multi-layer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited backazimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract We use local and teleseismic earthquakes to analyze shear wave splitting within the Pamir‐Hindu Kush region, north of the western syntaxis of the India‐Asia collision zone. These two data sets allowed us to map the distribution of azimuthal anisotropy, to put constraints on the depth range where it is accumulated, and to deduce characteristics of ongoing deformation. From 1,073 SKS (core‐mantle refracted phases) measurements at 107 stations, we derived time delays of 0.7–2.25 s and dominantly ENE‐WSW oriented fast polarization directions. Fast polarization directions only deviate adjacent to the subducting slabs and major strike‐slip faults, aligning parallel to these structures. From 461 direct S measurements along a transect perpendicular to the Pamir seismic zone, we obtain fast directions parallel to those from SKS measurements but smaller delay times (average 0.4 s), which vary depending on depth. Time delays exhibit 0.1–0.3 s crustal contribution and increase to 0.8 s in a narrow domain coinciding with the inferred subcrustal contact of the two colliding plates. We find measurements from the same event‐station paths at different filter frequencies to be frequency‐independent, allowing a comparison with SKS results along the studied profile. The smaller average time delays of local events imply that the crust and uppermost mantle only make a minor contribution to the SKS splitting. Thus, the coherent fast direction pattern suggests a strain field dominated by the indentation of India and the escape of sublithospheric material north of the indenter. Crustal anisotropy is likely also controlled by this regional deformation pattern with locally highest strain rates closest to the continental subduction front.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract We present detailed lithospheric images of the NE Tibetan Plateau by applying the depth migration technique to S receiver functions derived from 113 broadband stations. Our migrated images indicate that the lithosphere‐asthenosphere boundary (LAB) lies at depths of 105–120 km beneath the Qilian terrane and reaches depths of 126–140 km below the Alxa and Ordos blocks. The most prominent variation in the LAB depth is the presence of LAB steps of no less than 20 km in the transition zone between the active NE Tibetan Plateau and the surrounding cratonic Alxa and Ordos blocks, which conflicts with the model of southward subduction of the Alxa and Ordos blocks. Furthermore, the marked LAB steps occur at 130 ± 10 km away from the southern surficial boundary faults between the NE Tibetan Plateau and the surrounding tectonic provinces, corresponding to the North Qilian fault and the Liupanshan fault, respectively. Therefore, we propose that these scenarios of LAB can be attributed to the delamination of fragmented mantle lithosphere in the transition zone between the NE Tibetan Plateau and the surrounding Alxa and Ordos blocks, triggered by lateral asthenospheric flow. In addition, our observations of a thin lithosphere with thickness of 107–115 km beneath the Songpan‐Ganzi terrane and the west Qinlin orogen greatly facilitate the process of underlying lateral asthenospheric flow. The isostatic uplift of the plateau caused by the delamination of fragmented mantle lithosphere, together with increased horizontal compressive stress, may have led to the outward growth of the NE Tibetan Plateau.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-19
    Description: We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intra-crustal discontinuity is observed at ~55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At ~ 20 km depth, a mid-crustal low velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-20
    Description: The intermediate-depth seismicity (IDS) beneath the Gibraltar Arc is enigmatic. So far, there is no general consensus on its relationship with the ongoing tectonic processes. We analyzed S wave receiver functions (SRF) with data recorded by a dense N-S seismic profile deployed across the Sierra Nevada in southern Spain. SRF piercing points at depths of the lithosphere-asthenosphere boundary (LAB) sample an area of the IDS zone, providing an ideal opportunity to study the lithospheric structure at the IDS zone. We observe an abrupt change in the LAB depth along a profile from north to south across the northern branch of the IDS. The LAB depth changes from 90-100 km north of the IDS to ~130 km south of it. We propose that the IDS marks a tear in the Iberian mantle lithosphere along its entire length, implying an ongoing lithospheric delamination process that produces the seismicity at its onset.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-06
    Description: Detailed seismic structure in the crust beneath the northeastern margin of Tibetan Plateau was revealed by receiver functions of a regional permanent seismic network. At most stations, negative P-to-S converted phases can be detected in the radial receiver functions, prior to the Moho phases, indicating low velocities in the mid-lower crust. Prominent azimuthal variations in the transverse receiver functions with polarity reversal suggest azimuthal anisotropy in the crust. We used time variations of the P-to-S converted phases at the Moho in the radial receiver functions and the azimuth-weighted stacking of transverse receiver functions to determine the fast direction and magnitude of anisotropy. The low-velocity mid-lower crust with the coherent azimuthal anisotropy in the northeastern margin of Tibetan Plateau is consistent with the lower-crustal channel flow model. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-04
    Description: Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and “frozen” melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-31
    Description: A seismological network was operated at the junction of the aseismic Walvis Ridge with the northwestern Namibian coast. We mapped crustal thickness and bulk Vp/Vs ratio by the H-k analysis of receiver functions. In the Damara Belt, the crustal thickness is ~35 km with a Vp/Vs ratio of 〈1.75. The crust is ~30 km thick at the coast in the Kaoko Belt. Strong variations in crustal thickness and Vp/Vs ratios are found at the landfall of the Walvis Ridge. Here and at ~150 km northeast of the coast, the crustal thickness increases dramatically reaching 44 km and the Vp/Vs ratios are extremely high (~1.89). These anomalies are interpreted as magmatic underplating produced by the mantle plume during the breakup of Gondwana. The area affected by the plume is smaller than 300 km in diameter, possibly ruling out the existence of a large plume head under the continent during the breakup.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 42(11), pp. 4326-4334, ISSN: 0094-8276
    Publication Date: 2015-08-09
    Description: Azimuthal anisotropy derived from multi-mode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths 〈100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multi-layer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited backazimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...