ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society (of London)  (2)
  • 2015-2019  (2)
  • 1
    Publication Date: 2018-08-02
    Description: The southern Tuaheni Landslide Complex (TLC) at the Hikurangi subduction margin displays distinctive morphological features along its distribution over the Tuaheni slope offshore Gisborne, New Zealand. We here present first analyses of a gravity core transect that systematically samples surficial sediments from the source area to the toe of this landslide complex, thus providing important new insight into shallow lithological variation in the slide complex. Geophysical and geochemical core logs and core descriptions form the basis for a characterization of representative sediment successions that are indicative of the respective slope segment of recovery. Our results show that the lithology of surficial sediments varies significantly along the length of the landslide complex. Depending on the slope segment observed, this variation includes post-Last Glacial Maximum (LGM) outer-shelf sediments, and hemipelagic drape and near-surface reworked debris avalanche deposits, as well as multiple intercalated thinner turbidites and tephra layers at the distal end of the profile. Lithological downslope variability suggests ongoing mass transport events through the late Holocene that were likely to have been limited to small mud-turbidite flows. Integration with acoustic sub-bottom imagery reveals the presence of multiple stacked mass-transport deposits at depth, contrasting with previous interpretations of a single parent failure. Supplementary material: MSCL and XRF core-log data are made available through the PANGAEA database https://doi.pangaea.de/10.1594/PANGAEA.883867
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-29
    Description: Lacustrine-tsunami risk from landslides can be significant yet for most locations globally the hazard remains unquantified. Lake Tekapo, in the tectonically active mountain belt of New Zealand's South Island, has been chosen to develop surveying and modelling techniques to assess the hazard from landslide tsunamis. Lake Tekapo is ideal for this study due to the high sedimentation rates, steep surrounds and the proximity to active faulting that indicate a high landslide potential. The shoreline tourist settlement and hydropower infrastructure mean the impact of any tsunami could be significant. In 2016 a survey was carried out to collect high-resolution (1 m grid) EM2040 multibeam bathymetry, high-resolution seismic reflection data (Boomer and chirp) and 6 m long sediment cores. These data reveal a diverse range of sedimentary processes in response to high sediment input and numerous landslides with varied styles of emplacement. For example, a one-off landslide initiated 40 m above the shoreline with debris deposits that have runout onto the lake floor to 100 m water depth contrasts with the Cass River delta on the western shore that has failed multiple times during the lake-basin infilling history. Landslide-generated tsunami scenarios are used to determine the relative hazard at different regions of the lake to guide development of a probabilistic tsunami model.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...