ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (2)
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data
  • E31
  • J24
  • Life Sciences (General)
  • Istituto Nazionale di Geofisica e Vulcanologia  (1)
  • Springer Verlag  (1)
  • Elsevier
  • Springer Berlin Heidelberg
  • 2015-2019  (2)
  • 1
    Publication Date: 2017-04-04
    Description: We investigated the Campi Flegrei caldera using a quantitative approach to retrieve the spatial and temporal variations of the stress field. For this aim we applied a joint inversion of geodetic and seismological data to a dataset of 1,100 optical levelling measurements and 222 focal mechanisms, recorded during the bradyseismic crisis of 1982–1984. The inversion of the geodetic dataset alone, shows that the observed ground deformation is compatible with a source consisting of a planar crack, located at the centre of the caldera at a depth of about 2.56 km and a size of about 4 × 4 km. Inversion of focal mechanisms using both analytical and graphical approaches, has shown that the key features of the stress field in the area are: a nearly subvertical σ 1 and a sub-horizontal, roughly NNE-SSW trending σ 3. Unfortunately, the modelling of the stress fields based only upon the retrieved ground deformation source is not able to fully account for the stress pattern delineated by focal mechanism inversion. The introduction of an additional regional background field has been necessary. This field has been determined by minimizing the difference between observed slip vectors for each focal mechanism and the theoretical maximum shear stress deriving from both the volcanic (time-varying) and the regional (constant) field. The latter is responsible for a weak NNE-SSW extension, which is consistent with the field determined for the nearby Mt. Vesuvius volcano. The proposed approach accurately models observations and provides interesting hints to better understand the dynamics of the volcanic unrest and seismogenic processes at Campi Flegrei caldera. This procedure could be applied to other volcanoes experiencing active ground deformation and seismicity.
    Description: Published
    Description: 3247–3263
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Stress field inversion ; Campi Flegrei ; volcano deformation ; volcanic seismicity ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Mt. Vesuvius (southern Italy) is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configu- ration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006- 2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M〈1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section), which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.
    Description: Published
    Description: S0450
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: open
    Keywords: Vesuvius ; seismic network ; volcano monitoring ; network performance ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...