ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wekerle, Claudia; Wang, Qiang; von Appen, Wilken-Jon; Danilov, Sergey; Schourup-Kristensen, Vibe; Jung, Thomas (2017): Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 122(11), 8385-8405, https://doi.org/10.1002/2017JC012974
    Publication Date: 2023-03-16
    Description: Eddy driven recirculation of Atlantic Water (AW) in the Fram Strait modifies the amount of heat that reaches the Arctic Ocean, but is difficult to constrain in ocean models due to very small Rossby radius there. In this study we explore the effect of resolved eddies on the AW circulation in a locally eddy-resolving simulation of the global Finite-Element-Sea ice-Ocean-Model (FESOM) integrated for the years 2000-2009, by focusing on the seasonal cycle. An eddy-permitting simulation serves as a control run. Our results suggest that resolving local eddy dynamics is critical to realistically simulate ocean dynamics in the Fram Strait. Strong eddy activity simulated by the eddy-resolving model, with peak in winter and lower values in summer, is comparable in magnitude and seasonal cycle to observations from a long-term mooring array, whereas the eddy-permitting simulation underestimates the observed magnitude. Furthermore, a strong cold bias in the central Fram Strait present in the eddy-permitting simulation is reduced due to resolved eddy dynamics, and AW transport into the Arctic Ocean is increased with possible implications for the Arctic Ocean heat budget. Given the good agreement between the eddy-resolving model and measurements, it can help filling gaps that point-wise observations inevitably leave. For example, the path of the West Spitsbergen Current offshore branch, measured in the winter months by the mooring array, is shown to continue cyclonically around the Molloy Deep in the model, representing the major AW recirculation branch in this season.
    Keywords: AWI_PhyOce; File content; File format; File name; File size; FRAM; Fram Strait; Fram-Strait; FRontiers in Arctic marine Monitoring; Physical Oceanography @ AWI; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Wang, Qiang; Danilov, Sergey; Jung, Thomas; Kaleschke, Lars; Wernecke, Andreas (2016): Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters, 43(13), 7019-7027, https://doi.org/10.1002/2016GL068696
    Publication Date: 2023-03-16
    Description: Northern Hemisphere sea ice from a Finite-Element Sea-Ice Ocean Model (FESOM) 4.5 km resolution simulation carried out by researchers from Alfred Wegener Institute (AWI), Germany. Concentration is shown with color; thickness is shown with shading. A global 1 degree mesh is used, with the "Arctic Ocean" locally refined to 4.5 km. South of CAA and Fram Strait the resolution is not refined in this simulation. The animation indicates that the 4.5 km model resolution helps to represent the small scale sea ice features, although much higher resolution is required to fully resolve the ice leads. The animation is created by Michael Böttinger from DKRZ (https://www.dkrz.de).
    Keywords: Arctic; DATE/TIME; File content; File format; File size; pan-Arctic; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: HighResMIP HR simulations. These data include all datasets published for 'CMIP6.HighResMIP.AWI.AWI-CM-1-1-HR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 HR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 1306775 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: DECK (1pctCO2, abrupt-4xCO2, piControl simulations) and CMIP historical simulations. These data include all datasets published for 'CMIP6.CMIP.AWI.AWI-CM-1-1-MR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 MR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: HighResMIP LR simulations. These data includes all datasets published for 'CMIP6.HighResMIP.AWI.AWI-CM-1-1-LR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 LR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T63L47 native atmosphere T63 gaussian grid; 192 x 96 longitude/latitude; 47 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 126859 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: ScenarioMIP. These data include all datasets published for 'CMIP6.ScenarioMIP.AWI.AWI-CM-1-1-MR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 MR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean Modelling, ELSEVIER SCI LTD, 121, pp. 117-131, ISSN: 1463-5003
    Publication Date: 2018-02-28
    Description: Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model’s ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing. Although the number of 3D wet grid points used in FESOM is similar to that in the nested NEMO, FESOM uses about two times the number of CPUs to obtain the same model throughput (in terms of simulated model years per day). This is feasible due to the high scalability of the FESOM code.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean Modelling, ELSEVIER SCI LTD, 115, pp. 59-69, ISSN: 1463-5003
    Publication Date: 2017-07-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean Modelling, ELSEVIER SCI LTD, ISSN: 1463-5003
    Publication Date: 2016-04-06
    Description: Stability and convergence of the modified EVP implementation of the visco-plastic sea ice rheology by Bouillon et al., Ocean Modell., 2013, is analyzed on B- and C-grids. It is shown that the implementation on a B-grid is less restrictive with respect to stability requirements than on a C-grid. On C-grids convergence is sensitive to the discretization of the viscosities. We suggest to adaptively vary the parameters of pseudotime subcycling of the modified EVP scheme in time and space to satisfy local stability constraints. This new approach generally improves the convergence of the modified EVP scheme and hence its numerical efficiency. The performance of the new “adaptive EVP” approach is illustrated in a series of experiments with the sea ice component of the MIT general circulation model (MITgcm) that is formulated on a C-grid
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    EGU General Assembly 2016
    In:  EPIC3EGU General Assembly 2016, Vienna, Austria, 2016-04-17-2016-04-22EGU General Assembly 2016, EGU General Assembly 2016
    Publication Date: 2022-09-29
    Description: Ocean mass variability on timescales of months to decades is still insufficiently understood. On these timescales, large-scale ocean bottom pressure (OBP) anomalies are associated both with wind induced variability as well as baroclinic processes, i.e. related to vertical shear of ocean density. The GRACE mission has been instrumental in quantifying such mass fluctuations, yet its lifetime is limited. The broader importance of non-tidal ocean mass variability for oceanography but also geodesy (i.e. for understanding the time-varying geoid, shape of the Earth's crust, centre of figure, Earth rotation) is obvious. Deep ocean processes can only be understood properly when not only sea surface height and upper ocean steric expansion are measured but deep ocean pressure anomalies are accounted for in addition. Apart from GRACE, the SWARM constellation may provide information on the lowest degrees of the time-variable gravity field of the Earth and therefore of large-scale oceanic processes. Here we introduce the project CONTIM, which is run in the framework of the German Special Priority Programme "Dynamic Earth" (SPP1788). In CONTIM we propose to combine expertise on precise satellite orbit determination, gravity field and mass modelling, and physical oceanography to retrieve, analyse and verify consistent time series of ocean mass variations from a set of low-flying Earth orbiters including GRACE, but extending the GRACE time series. This information is used to advance our understanding of oceanic movement, ocean warming and sea level rise. CONTIM will thus synergistically address three areas: (1) the methodology of precisely determining LEO orbits, applied here to the SWARM constellation. (2) a new method of retrieving large-scale time-varying gravity (TVG) and mass change associated with oceanic (and cryospheric and hydrological) processes from results of (1), based on forward modelling. (3) physical modelling of ocean mass variations, both for improved forward modelling in (2) and for integration with satellite-geodetic retrieved ocean mass, and aiding in the determination of a final consistent modelling of sea level rise, ocean warming and oceanic mass budget. In this contribution, we will give an overview of the objectives of the project and provide some first results. We will highlight the technical challenges associated with the computation of kinematic SWARM orbits. Furthermore, different scenarios for time-variable gravity field retrieval are tested and evaluated, and the CHAMP data are used to test the methods over a longer period. To better understand and parameterize the ocean mass signals, we will discuss output from a high resolution version of the ocean model FESOM forced with tides, surface winds and atmospheric pressure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...