ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-29
    Description: The ground-based microwave sounding radiometers installed at 9 weather stations of Korea Meteorological Administration alongside with the wind profilers have been operated for more than 4 years. Here we introduce a process to assess the characteristics of the instrument calibration by comparing the measured brightness temperature (Tb) with the theoretical reference data, which are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model. Based on the three years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration, the thick clouds, and the frequency calibration to the quality of the measured Tb. When the three effects are properly considered, including the frequency adjustment which is estimated using the simulated Tb, the measured and simulated Tb show an excellent agreement. The regression coefficients are better than 0.97 along with the bias value of better than 0.5 K. However, the variability given as the SD of difference between the measured and simulated Tb, show a relatively large value at the lower observation frequencies, as large as 2.6 K at the 51.28 GHz channel, while they improve with the increasing frequency.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-12-15
    Description: Elevated levels of formaldehyde (HCHO) along the ship corridors have been observed by satellite sensors, such as ESA/ERS-2 GOME (Global Ozone Monitoring Experiment), and were also simulated by global 3-D chemistry-transport models. In this study, three likely sources of the elevated HCHO levels in the ship plumes as well as their contributions to the elevated HCHO levels (budget) were investigated using a newly-developed ship-plume photochemical/dynamic model: (1) primary HCHO emission from ships; (2) secondary HCHO production via the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) emitted from ships; and (3) atmospheric oxidation of CH4 within the ship plumes. For this ship-plume modelling study, the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) ship-plume experiment, which was carried out about 100 km off the coast of California on 8 May 2002 (11:00 local standard time), was chosen as a base study case because it is the best defined in terms of (1) meteorological data, (2) in-plume chemical composition, and (3) background chemical composition. From multiple ship-plume model simulations for the ITCT 2K2 ship-plume experiment case, CH4 oxidation by elevated levels of in-plume OH radicals was found to be the main factor responsible for the elevated levels of HCHO in the ITCT 2K2 ship-plume. More than ~88% of the HCHO for the ITCT 2K2 ship-plume is produced by this atmospheric chemical process, except in the areas close to the ship stacks where the main source of the elevated HCHO levels would be primary HCHO from the ships (due to the deactivation of CH4 oxidation from the depletion of in-plume OH radicals). Because of active CH4 oxidation by OH radicals, the instantaneous chemical lifetime of CH4 (τCH4) decreased to ~0.45 yr inside the ship plume, which is in contrast to τCH4 of ~1.1 yr in the background (up to ~41% decrease) for the ITCT 2K2 ship-plume case. A variety of likely ship-plume situations at three different latitudinal locations within the global ship corridors was also studied to determine the enhancements in the HCHO levels in the marine boundary layer (MBL) influenced by ship emissions. It was found that the ship-plume HCHO levels could be 19.9–424.9 pptv higher than the background HCHO levels depending on the latitudinal locations of the ship plumes (i.e., intensity of solar radiation and temperature), MBL stability and NOx emission rates. On the other hand, NMVOC emissions from ships were not found to be a primary source of photochemical HCHO production inside ship plumes due to their rapid and individual dilution. However, the diluted NMVOCs would contribute to the HCHO productions in the background air.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: For a case study of Typhoon Ewiniar performed with a mesoscale model, we compare stratospheric gravity wave (GW) momentum flux determined from temperature variances by applying GW polarization relations and by assuming upward propagating waves, with GW momentum flux calculated from model winds which is considered as a reference. The temperature-based momentum-flux profile exhibits positive biases relative to the reference, which fluctuate significantly with altitude. The vertically-averaged magnitude of the positive biases is about 14% of the reference momentum flux. We found that this deviation from the reference stems from the interference between upward and downward propagating waves. The downward propagating GWs are due mainly to partial reflections of upward propagating waves at altitudes where the background wind and stability change with height. When the upward and downward propagating waves are decomposed and their momentum fluxes are calculated separately from temperature perturbations, the fraction of the momentum flux arising from the downward propagating waves is about 4.5–8.2% of that from the upward propagating waves. The net momentum flux of upward and downward propagating GWs agrees well with the reference from the model wind perturbations. The implications of this study for the GW momentum-flux observations from satellites are discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-24
    Description: The momentum forcing by equatorial waves to the QBO is estimated using recent reanalyses. Based on the estimation using the conventional pressure level datasets, the forcing by the Kelvin waves (3–9 m s−1 month−1) dominates the net forcing by all equatorial wave modes in the easterly-to-westerly transition phase at 30 hPa (3–11 m s−1 month−1). In the opposite phase, the net forcing by equatorial wave modes is small (1–5 m s−1 month−1). By comparing the results with those from the native model-level dataset of the ERA-Interim reanalysis, it is suggested that the use of conventional-level data causes the Kelvin wave forcing to be underestimated by 2–4 m s−1 month−1. The momentum forcing by mesoscale gravity waves, which are unresolved in the reanalyses, is deduced from the residual of the zonal wind tendency equation. In the easterly-to-westerly phase at 30 hPa, the mesoscale gravity wave forcing is found to be smaller than the resolved wave forcing, whereas the gravity wave forcing dominates over the resolved wave forcing in the opposite phase. Finally, we discuss the uncertainties in the wave forcing estimates using the reanalyses.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-29
    Description: For a case study of Typhoon Ewiniar performed with a mesoscale model, we compare stratospheric gravity wave (GW) momentum flux determined from temperature variances by applying GW polarization relations and by assuming upward propagating waves with GW momentum flux calculated from model winds, which is considered as a reference. The temperature-based momentum-flux profile exhibits positive biases which fluctuate with altitude and have peak values of 17–39% at 20–40 km. We found that this deviation stems from the interference between upward and downward propagating waves. The downward propagating GWs are due mainly to partial reflections of upward propagating waves at altitudes where the background wind and stability change with height. When the upward and downward propagating waves are decomposed and their momentum fluxes are calculated separately from temperature perturbations, the fraction of the momentum flux arising from the downward propagating waves is about 4.5–8.2%. The net momentum flux of upward and downward propagating GWs agrees well with the reference from the model wind perturbations. Global distributions of GW momentum flux can be deduced from satellite measurements of temperatures also employing GW polarization relations but using different analysis methods. The implications of this study for the GW momentum-flux observations from satellites are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-19
    Description: An idealized baroclinic instability case is simulated using a ~ 10 km resolution global model to investigate the characteristics of gravity waves (GWs) generated in the baroclinic life cycle. Three groups of GWs (W1–W3) appear around the high-latitude surface trough at the mature stage of the baroclinic wave. They have horizontal and vertical wavelengths of 40–400 and 2.9–9.8 km, respectively, in the upper troposphere. The two-dimensional phase-velocity spectrum of the waves is arc-shaped with a peak at 17 m s−1 eastward, which is difficult for the waves to propagate upward through the tropospheric westerly jet. At the breaking stage of the baroclinic wave, a midlatitude surface low is isolated from the higher-latitude trough, and two groups of quasi-stationary GWs (W4 and W5) appear near the surface low. These waves have horizontal and vertical wavelengths of 60–400 and 4.9–14 km, respectively, and are able to propagate vertically for long distances. The generation mechanism of the simulated GWs is discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-03
    Description: Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 40 nm and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and a radioactive plume. Limitations of the approaches are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-17
    Description: Convective gravity wave (GW) sources are spatially localized and emit at the same time waves with a wide spectrum of phase speeds. Any wave analysis therefore compromises between spectral and spatial resolution. Future satellite borne limb imagers will for a first time provide real 3-D volumes of observations. These volumes will be however limited which will impose further constraints on the analysis technique. In this study a three dimensional few-wave approach fitting sinusoidal waves to limited 3-D volumes is introduced. The method is applied to simulated GWs above typhoon Ewiniar and GW momentum flux is estimated from temperature fluctuations. Phase speed spectra as well as average profiles of positive, negative and net momentum fluxes are compared to momentum flux estimated by Fourier transform as well as spatial averaging of wind fluctuations. The results agree within 10–20%. The few-wave method can also reveal the spatial orientation of the GWs with respect to the source. The relevance of the results for different types of measurements as well as its applicability to model data is discussed.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-27
    Description: The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of −2.6 and 1.8 K, respectively.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-20
    Description: Convective gravity wave (GW) sources are spatially localized and emit at the same time waves with a wide spectrum of phase speeds. Any wave analysis therefore compromises between spectral and spatial resolution. Future satellite borne limb imagers will for a first time provide real 3d volumes of observations. These volumes will be however limited which will impose further constraints on the analysis technique. In this study a three dimensional few-wave appoach fitting sinusoidal waves to limited 3-D volumes is introduced. The method is applied to simulated GWs above typhoon Ewiniar and GW momentum flux is estimated from temperature fluctuations. Phase speed spectra as well as average profiles of positive, negative and net momentum fluxes are compared to momentum flux estimated by Fourier transform as well as spatial averaging of wind fluctuations. The results agree within 10–20%. The few-wave method can also reveal the spatial orientation of the GWs with respect to the source. The relevance of the results for different types of measurements as well as its applicability to model data is discussed.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...