ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (13)
  • 2015-2019  (13)
Collection
Years
Year
  • 11
    Publication Date: 2018-01-25
    Description: Rapidly rotating cylinder flows subjected to low-amplitude precessional forcing are studied numerically over a range of cylinder and precessional rotation rates. For sufficiently small rotation rates, viscous effects lead to a forced overturning flow that is steady in the precession (table) frame of reference. Increasing the rotation rates, this forced flow loses stability in a Hopf bifurcation, which can be either supercritical or subcritical, and may preserve or break the symmetry of the system, depending on the parameter regime studied. Regardless of these details of the Hopf bifurcation, it is found that the Hopf instability is associated with a slightly detuned triadic resonance between the forced overturning flow and two free Kelvin modes (inviscid eigenmodes of the rotating cylinder). Further increases in rotation rates lead to a sequence of secondary instabilities which also follow a generic pattern irrespective of the parameter regime investigated. The relationship between this sequence of instabilities and the resultant nonlinear dynamics with the experimentally observed phenomenon of resonant collapse is discussed. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-02-27
    Description: Contained rotating flows subject to precessional forcing are well known to exhibit rapid and energetic transitions to disorder. Triadic resonance of inertial modes has been previously proposed as an instability mechanism in such flows, and that idea was developed into a successful model for predicting instability in a cylindrical container when departures from solid-body rotation are sufficiently small. Using direct numerical simulation and dynamic mode decomposition, we analyse instabilities of precessing cylinder flows whose three-dimensional basic states, steady in the gimbal frame of reference, may depart substantially from solid-body rotation. In the gimbal frame, the instability can be interpreted as resulting from a supercritical Hopf bifurcation that results in a limit-cycle flow. In the cylinder frame of reference, the basic state is a rotating wave with azimuthal wavenumber (Formula presented.), and the instability satisfies triadic-resonance conditions with the instability mode maintaining a fixed orientation with respect to the basic state. Thus, we are able to demonstrate the existence of two alternative but congruent explanations for the instability. Additionally, we show that basic states may depart substantially from solid-body rotation even with modest cylinder tilt angles, and growth rates for instabilities may be sufficiently large that nonlinear saturation to disordered states can occur within approximately ten cylinder revolutions, in agreement with experimental observations. © 2018 Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-11-29
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...