ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (4)
  • 2015-2019  (4)
  • 1
    Publication Date: 2015-10-01
    Description: The energy level and its directional distribution are key observations for understanding the energy balance in the wind-wave spectrum between wind-wave generation, nonlinear interactions, and dissipation. Here, properties of gravity waves are investigated from a fixed platform in the Black Sea, equipped with a stereo video system that resolves waves with frequency f up to 1.4 Hz and wavelengths from 0.6 to 11 m. One representative record is analyzed, corresponding to young wind waves with a peak frequency fp = 0.33 Hz and a wind speed of 13 m s−1. These measurements allow for a separation of the linear waves from the bound second-order harmonics. These harmonics are negligible for frequencies f up to 3 times fp but account for most of the energy at higher frequencies. The full spectrum is well described by a combination of linear components and the second-order spectrum. In the range 2fp to 4fp, the full frequency spectrum decays like f−5, which means a steeper decay of the linear spectrum. The directional spectrum exhibits a very pronounced bimodal distribution, with two peaks on either side of the wind direction, separated by 150° at 4fp. This large separation is associated with a significant amount of energy traveling in opposite directions and thus sources of underwater acoustic and seismic noise. The magnitude of these sources can be quantified by the overlap integral I(f), which is found to increase sharply from less than 0.01 at f = 2fp to 0.11 at f = 4fp and possibly up to 0.2 at f = 5fp, close to the 0.5π value proposed in previous studies.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-01
    Description: In this paper, an observational space–time ensemble of sea surface elevations is investigated in search of the highest waves of the sea state. Wave data were gathered by means of a stereo camera system, which was installed on top of a fixed oceanographic platform located in the Adriatic Sea (Italy). Waves were measured during a mature sea state with an average wind speed of 11 m s−1. By examining the space–time ensemble, the 3D wave groups have been isolated while evolving in the 2D space and grabbed “when and where” they have been close to the apex of their development, thus exhibiting large surface displacements. The authors have selected the groups displaying maximal crest height exceeding the threshold adopted to define rogue waves in a time record, that is, 1.25 times the significant wave height (Hs). The records at the spatial positions where such large crests occurred have been analyzed to derive the empirical distributions of crest and wave heights, which have been compared against standard statistical linear and nonlinear models. Here, the maximal observed wave crests have resulted to be outliers of the standard statistics, behaving as isolated members of the sample, apparently uncorrelated with other waves of the record. However, this study has found that these unexpectedly large wave crests are better approximated by a space–time model for extreme crest heights. The space–time model performance has been improved, deriving a second-order approximation of the linear model, which has provided a fair agreement with the empirical maxima. The present investigation suggests that very large waves may be more numerous than generally expected.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-01
    Description: Wave observations and modeling have recently demonstrated that wave extremes of short-crested seas are poorly predicted by statistics of time records. Indeed, the highest waves pertain to wave groups at focusing that have space–time dynamics. Therefore, the statistical prediction of extremes of short-crested sea states should rely on the multidimensional random wave fields’ assumption. To adapt wave extreme statistics to the space–time domain, theoretical models using parameters of the directional wave spectrum have been recently developed. In this paper, the influence of metocean forcings (wind conditions, ambient current, and bottom depth) on these parameters and hence on wave extremes is studied with a twofold strategy. First, parametric spectral formulations [Pierson–Moskowitz and Joint North Sea Wave Project (JONSWAP) frequency spectra with cos2 directional distribution function] are considered to represent the dependence of wave extremes upon wind speed, fetch, and space domain size. Afterward, arbitrary conditions are simulated by using the SWAN numerical model adapted to store the spectral parameters, and the effects on extremes of current- and depth-induced shoaling are investigated. Preliminarily, the space–time extremes prediction model adopted is assessed by means of numerical simulations of Gaussian random seas. Compared to the significant wave height of the sea state and for a given space domain size, results show that space–time extremes are enhanced by opposite currents, whereas they are weakened by increasing wind conditions (wind speed and fetch) and by depth-induced shoaling. In this respect, the remarkable contribution to wave extremes of the size of the space domain is substantiated.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...