ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 737-752, doi:10.1175/BAMS-D-16-0057.1.
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Description: The authors gratefully acknowledge financial support from the U.S. National Science Foundation (NSF; OCE-1259102, OCE-1259103, OCE-1259618, OCE-1258823, OCE-1259210, OCE-1259398, OCE-0136215, and OCE-1005697); the U.S. National Aeronautics and Space Administration (NASA); the U.S. National Oceanic and Atmospheric Administration (NOAA); the WHOI Ocean and Climate Change Institute (OCCI), the WHOI Independent Research and Development (IRD) Program, and the WHOI Postdoctoral Scholar Program; the U.K. Natural Environment Research Council (NERC; NE/K010875/1, NE/K010700/1, R8-H12-85, FASTNEt NE/I030224/1, NE/K010972/1, NE/K012932/1, and NE/M018024/1); the European Union Seventh Framework Programme (NACLIM project, 308299 and 610055); the German Federal Ministry and Education German Research RACE Program; the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN 227438-09, RGPIN 04357, and RG-PCC 433898); Fisheries and Oceans Canada; the National Natural Science Foundation of China (NSFC; 41521091, U1406401); the Fundamental Research Funds for the Central Universities of China; the French Research Institute for Exploitation of the Sea (IFREMER); the French National Center for Scientific Research (CNRS); the French National Institute for Earth Sciences and Astronomy (INSU); the French national program LEFE; and the French Oceanographic Fleet (TGIR FOF).
    Description: 2017-10-24
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-01
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-15
    Description: The first continuous estimates of freshwater flux across 26.5°N are calculated using observations from the RAPID–MOCHA–Western Boundary Time Series (WBTS) and Argo floats every 10 days between April 2004 and October 2012. The mean plus or minus the standard deviation of the freshwater flux (FW) is −1.17 ± 0.20 Sv (1 Sv ≡ 106 m3 s−1; negative flux is southward), implying a freshwater divergence of −0.37 ± 0.20 Sv between the Bering Strait and 26.5°N. This is in the sense of an input of 0.37 Sv of freshwater into the ocean, consistent with a region where precipitation dominates over evaporation. The sign and the variability of the freshwater divergence are dominated by the overturning component (−0.78 ± 0.21 Sv). The horizontal component of the freshwater divergence is smaller, associated with little variability and positive (0.35 ± 0.04 Sv). A linear relationship, describing 91% of the variance, exists between the strength of the meridional overturning circulation (MOC) and the freshwater flux (−0.37 − 0.047 Sv of FW per Sverdrups of MOC). The time series of the residual to this relationship shows a small (0.02 Sv in 8.5 yr) but detectable decrease in the freshwater flux (i.e., an increase in the southward freshwater flux) for a given MOC strength. Historical analyses of observations at 24.5°N are consistent with a more negative freshwater divergence from −0.03 to −0.37 Sv since 1974. This change is associated with an increased southward freshwater flux at this latitude due to an increase in the Florida Straits salinity (and therefore the northward salinity flux).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...