ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-04
    Description: Small-angle X-ray scattering measurements can provide valuable information about the solvent environment around biomolecules, but it can be difficult to extract solvent-specific information from observed intensity profiles. Intensities are proportional to the square of scattering amplitudes, which are complex quantities. Amplitudes in the forward direction are real, and the contribution from a solute of known structure (and from the waters it excludes) can be estimated from theory; hence, the amplitude arising from the solvent environment can be computed by difference. We have found that this “square root subtraction scheme” can be extended to non-zero q values, out to 0.1 Å −1 for the systems considered here, since the phases arising from the solute and from the water environment are nearly identical in this angle range. This allows us to extract aspects of the water and ion distributions (beyond their total numbers), by combining experimental data for the complete system with calculations for the solutes. We use this approach to test molecular dynamics and integral-equation (3D-RISM (three-dimensional reference interaction site model)) models for solvent structure around myoglobin, lysozyme, and a 25 base-pair duplex DNA. Comparisons can be made both in Fourier space and in terms of the distribution of interatomic distances in real space. Generally, computed solvent distributions arising from the MD simulations fit experimental data better than those from 3D-RISM, even though the total small-angle X-ray scattering patterns are very similar; this illustrates the potential power of this sort of analysis to guide the development of computational models.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-25
    Description: Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...