ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (4)
  • Copernicus Publications (EGU)
  • Nature Publishing Group (NPG)
  • 2015-2019  (5)
  • 1
    Publication Date: 2015-11-05
    Description: Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osswald, Matthias -- Jung, Erik -- Sahm, Felix -- Solecki, Gergely -- Venkataramani, Varun -- Blaes, Jonas -- Weil, Sophie -- Horstmann, Heinz -- Wiestler, Benedikt -- Syed, Mustafa -- Huang, Lulu -- Ratliff, Miriam -- Karimian Jazi, Kianush -- Kurz, Felix T -- Schmenger, Torsten -- Lemke, Dieter -- Gommel, Miriam -- Pauli, Martin -- Liao, Yunxiang -- Haring, Peter -- Pusch, Stefan -- Herl, Verena -- Steinhauser, Christian -- Krunic, Damir -- Jarahian, Mostafa -- Miletic, Hrvoje -- Berghoff, Anna S -- Griesbeck, Oliver -- Kalamakis, Georgios -- Garaschuk, Olga -- Preusser, Matthias -- Weiss, Samuel -- Liu, Haikun -- Heiland, Sabine -- Platten, Michael -- Huber, Peter E -- Kuner, Thomas -- von Deimling, Andreas -- Wick, Wolfgang -- Winkler, Frank -- England -- Nature. 2015 Dec 3;528(7580):93-8. doi: 10.1038/nature16071. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, INF 224, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), INF 224, 69120 Heidelberg, Germany. ; Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany. ; Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universitat Munchen, 81675 Munich, Germany. ; Neurosurgery Clinic, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany. ; Department of Neurophysiology, Institute of Physiology, University of Wurzburg, 97070 Wurzburg, Germany. ; Department of Medical Physics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany. ; Light Microscopy Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway. ; Institute of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria. ; Tools For Bio-Imaging, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany. ; Institute of Physiology II, Eberhard Karls University of Tubingen, 72074 Tubingen, Germany. ; Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria. ; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada. ; Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada. ; Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada. ; Helmholtz Young Investigator Group, Normal and Neoplastic CNS Stem Cells, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany. ; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; CCU Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany. ; Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536111" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytoma/metabolism/*pathology/radiotherapy ; Brain Neoplasms/metabolism/*pathology/radiotherapy ; Cell Communication/radiation effects ; Cell Death/radiation effects ; Cell Proliferation/radiation effects ; Cell Surface Extensions/metabolism/radiation effects ; Cell Survival/radiation effects ; Connexin 43/metabolism ; Disease Progression ; GAP-43 Protein/metabolism ; Gap Junctions/*metabolism/radiation effects ; Glioma/metabolism/pathology/radiotherapy ; Humans ; Male ; Mice ; Mice, Nude ; Neoplasm Invasiveness ; Radiation Tolerance/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting 2019, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2021-08-16
    Description: Deciduous larch is a weak competitor when growing in mixed stands with evergreen taxa but is dominant in many boreal forest areas of Eastern Siberia. However, it is hypothesized that certain factors such as a shallow active layer thickness and high fire frequency favor larch dominance. Our aim is to understand how thermohydrological interactions between vegetation, permafrost, and atmosphere stabilize the larch forests and the underlying permafrost in Eastern Siberia. A tailored version of a one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas and used to reproduce the energy transfer and thermal regime of permafrost ground in typical boreal larch stands. In order to simulate the responds of Arctic trees to local climate and permafrost conditions we have implemented a multilayer canopy parameterization originally developed for the Community Land Model (CLM-ml_v0). The coupled model is capable of calculating the full energy balance above, within and below the canopy including the radiation budget, the turbulent fluxes and the heat budget of the permafrost ground under several forcing scenarios. We will present first results of simulations performed for different study sites in larch-dominated forests of Eastern Siberia and Mongolia under current and future climate conditions. Model performance is thoroughly evaluated based on comprehensive in-situ soil temperature and radiation measurements at our study sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675.
    Description: Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past.
    Description: Boundary condition data are available online via the sources referenced in the manuscript. This work was partially funded by a Helmholtz Association of Research Centres (HGF) Joint Russian‐German Research Group (HGF JRG 100). This study is part of a project that has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement 773421. Submarine permafrost studies in the Kara and Laptev Seas were supported by Russian Foundation for Basic Research (RFBR/RFFI) grants 18‐05‐60004 and 18‐05‐70091, respectively. The International Permafrost Association (IPA) and the Association for Polar Early Career Scientists (APECS) supported research coordination that led to this study. We acknowledge coordination support of the World Climate Research Programme (WCRP) through their core project on Climate and Cryosphere (CliC). Thanks to Martin Jakobsson for providing a digitized version of the preliminary IHO delineation of the Arctic seas and to Guy Masters for access to the observational geothermal database. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2019-10-17
    Keywords: Submarine permafrost ; Arctic ; Cryosphere ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...