ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (612)
  • American Chemical Society  (563)
  • American Chemical Society (ACS)  (132)
  • 2015-2019  (1,307)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-01-29
    Description: Momilactones A (MA) and B (MB) are the active phytoalexins and allelochemicals in rice. In this study, MA and MB were purified from rice husk of Oryza sativa cv. Koshihikari by column chromatography, and purification was confirmed by high-performance liquid chromatography, thin-layer chromatography, gas chromatography-mass spectrometry, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and 1H and 13C nuclear magnetic resonance analyses. By in vitro assays, both MA and MB exerted potent inhibition on α-amylase and α-glucosidase activities. The inhibitory effect of MB on these two key enzymes was greater than that of MA. Both MA and MB exerted greater α-glucosidase suppression as compared to that of the commercial diabetic inhibitor acarbose. Quantities of MA and MB in rice grain were 2.07 ± 0.01 and 1.06 ± 0.01 µg/dry weight (DW), respectively. This study was the first to confirm the presence of MA and MB in refined rice grain and reported the α-amylase and α-glucosidase inhibitory activity of the two compounds. The improved protocol of LC-ESI-MS in this research was simple and effective to detect and isolate MA and MB in rice organs.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-02
    Description: Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and β-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-27
    Description: Mutation technology has been applied more in recent decades to achieve novel products that are not commonly found in nature. An experiment was conducted to examine the effects of an N-methyl-N-nitrosourea (MNU) mutation on the growth, yield, and physicochemical properties of rice. Seeds of two rice cultivars (K1: DT84, and K3: Q5), along with their mutant lines (K2: mutated DT84, and K4: mutated Q5), were sown, and the established seedlings were transplanted to an open field. Ten hills per plot were randomly selected to evaluate growth parameters, yield, and components. Physicochemical attributes, including protein, amylose, and lipid contents, as well as taste score were measured by a quality tester device. The results showed that plant length, tiller number, and panicle length were higher in mutant lines than those of their cultivars. Furthermore, mutant lines took longer to reach heading and maturity stage. The highest panicle number, spikelet number, repined ratio, 1000 grain weight, 1000 brown rice weight, and grain yield were obtained in mutant lines, as compared to cultivars. The greatest grain yield was obtained in the K4 mutant line (11.6 t/ha), while the lowest was recorded in the K1 cultivar (7.7 t/ha). Lower amylose, protein, and lipid contents were observed in mutant lines compared to those in cultivars. The taste score, which increased from 67.7 to 73.7, was found to be correlated with lower amylose, protein, and lipid contents. The mutation approach increased the grain length but decreased the grain width of tested varieties. This study highlights and suggests the importance of MNU mutation in terms of rice yield improvement with preferable quality.
    Electronic ISSN: 2077-0472
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-06
    Description: Methadone maintenance treatment (MMT) has been scaled up significantly in recent years. This study aimed to investigate the pattern of polysubstance use in 395 MMT patients and its contextualized associated factors. A cross-sectional study was performed in three outpatient MMT clinics in Nam Dinh Province. Multivariate Poisson regression was used to identify factors associated with polysubstance use status. The mean MMT duration and the current MMT dose was 3.3 years and 69.2 mg, respectively. Among participants, 24.8% reported daily alcohol use, 68.6% smoked regularly, and 6% used illicit drugs. Peer pressure and MMT suboptimal adherence were found to associate with continual usage of drugs (47.8%). Participants who lived with a spouse/partner, were self-employed, and smoked were more likely to drink alcohol. Those who drink were also more likely to smoke, and vice versa. Recommendations for policymakers include community-based education and promotional programs aiming to decrease substance usage in the community as well as encouraging and supporting the private health sector in establishing private MMT services and clinics. Further longitudinal studies on polysubstance usage among MMT patients should also be conducted.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-02
    Description: Attempts regarding the improvement and development of novel rice with better quality and higher productivity have been increasing. Among approaches, mutation is a direct alteration on the genome and considered as one of the most beneficial routes to acquire new beneficial traits in rice. An experiment was carried out to explore the effects of N-methyl-N-nitrosourea (MNU) mutation on the antioxidant activities, phytochemical compounds, and momilactones A (MA) and B (MB) in rice. Two rice cultivars, K1 (an original cultivar DT84) and K2 (mutated DT84), were examined. Antioxidant activities, phenolic compounds, and momilactones of the rice grain, husk, and straw portions were measured and quantified. Antioxidant activities were higher in grain and straw of K2, whereas K1 showed greater antioxidant activity in rice husk. Additionally, K2 displayed higher total phenolic contents (TPC) in grain and straw as well as lower of it in the husk, but these variations significantly differed only in the straw portion. An increase in total flavonoid contents (TFC) was observed in the husk of K1, while K2 significantly enhanced TFC in straw. Both MA and MB, two compounds obtaining antidiabetes, anticancer, antimicrobial, antigout, and antiobesity properties, were detected and quantified in grain, husk, and straw of K1 and K2 samples. Generally, the contents of MA were higher than MB in all tested portions of rice crop. MA and MB were higher in straw followed by those in husk and grain, respectively. K2 contained higher amounts of MA and MB in straw and husk, but lower contents in grain compared with those in K1. This study illustrates that MNU mutation can improve grain quality and enhance bioactive compounds in straw, husk, and grain of rice. This approach has the potential to develop functional foods from rice, and therefore help farmers in developing countries to improve value in rice production.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-18
    Description: Difficulties in breeding new rice cultivars that have a high yield, are acceptable quality, and are tolerant to environmental stresses have been the major constraint of rice production in many developing countries, as these traits are determined by multiple genes associated with complicated and uncontrollable gene segregations.Furthermore, the gene/QTL (quantitative trait locus) introduced to the cultivar is unstable due to the interaction among the active genes, which determine the phenotypic performance, not yet been well understood or controllable. In this study, the N-methyl-N-nitrosourea (MNU)-induced mutation was applied to the heterozygote of the F1 generation from the cross between TBR1 (female) and KD18 (male parent). The phenotype and genotype of the M2 and M3 generations were evaluated and showed that the mutant population phenotypes, including the plant height, semi-dwarfism, amylose content, protein content, gel consistency, grain yield, and spikelet fertility, varied. Interestingly, no segregation among the genotypes in the M2 and M3 generations was observed, while the genotypes of the control population were either paternally inherited or indeterminable when using 28 polymorphism simple sequence repeat (SSR) markers that were identified on parental lines from 200 markers. The MNU-induced mutation caused maternal inheritance in the segregating populations, as primarily important agronomic traits were maternally succeeded from the female line TBR1. The findings of this study indicated that, through the use of MNU, the breeding of rice cultivars with close genetic backgrounds (similarity coefficient = 0.52) could be shortened by the maternal control of important qualities, such as pest and disease resistance and high yield, thus contributing to sustainable rice production for rice farmers. Further examination of rice cultivars with a greater difference in the genetic background should be subsequently conducted.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-27
    Description: Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-15
    Description: In this study, we evaluated antioxidant, antihyperuricemic, and herbicidal activities of essential oils (EOs) from Piper cubeba Bojer and Piper nigrum L.; two pepper species widely distributed in tropics, and examined their chemical compositions. Dried berries of P. cubeba and P. nigrum were hydro-distilled to yield essential oil (EO) of 1.23 and 1.11% dry weight, respectively. In the antioxidant assay, the radical scavenging capacities of P. cubeba EO against DPPH and ABTS free radicals were 28.69 and 24.13% greater than P. nigrum, respectively. In the antihyperuricemic activity, P. cubeba EO also exhibited stronger inhibitory effects on xanthine oxidase (IC50 = 54.87 µg/mL) than P. nigrum EO (IC50 = 77.11 µg/mL). In the herbicidal activity, P. cubeba EO showed greater inhibition on germination and growth of Bidens pilosa and Echinochloa crus-galli than P. nigrum EO. Besides, P. cubeba EO decreased 15.98–73.00% of photosynthesis pigments of B. pilosa and E. crus-galli, while electrolyte leakages, lipid peroxidations, prolines, phenolics, and flavonoids contents were increased 10.82–80.82% at 1.93 mg/mL dose. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses revealed that P. nigrum and P. cubeba EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. Terpinen-4-ol (42.41%), α-copaene (20.04%), and γ-elemene (17.68%) were the major components of P. cubeba EO, whereas β-caryophyllene (51.12%) and β-thujene (20.58%) were the dominant components of P. nigrum EO. Findings of this study suggest both P. cubeba and P. nigrum EOs were potential to treat antioxidative stress and antihyperuricemic related diseases. In addition, the EOs of the two plants may be useful to control B. pilosa and E. crus-galli, the two invasive and problematic weeds in agriculture practice.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-18
    Description: Nanogel-based systems loaded with single anticancer drugs display miscellaneous effectiveness in tumor remission, gradually circumventing mutation and resistance in chemotherapy. Hence, the existence of dual-drug delivered nano-sized systems has been contemporaneous with drug development and preceded the conventional-dose chemotherapy. Among outstanding synergistic drug nanoplatforms, thermosensitive copolymer heparin-Pluronic F127 (Hep-F127) co-delivering cisplatin (CDDP) and curcumins (Cur) (Hep-F127/CDDP/Cur) has emerged as a notable candidate for temperature-responsive drug delivery. The procedure was based on the entrapment of curcumin into the hydrophobic core of bio-degradable co-polymer Hep-F127 while the hydrophilic drug CDDP subsequently conjugated to the backbone heparin to form the core-shell structure. The copolymer was characterized by Fourier transform infrared (FT-IR) spectrophotometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), to corroborate the successful synthesis and via HPLC along with AES-ICP to evaluate the high drug loading along with a controllable release from the nano-gels. A well-defined nano-shell with size in the 129.3 ± 3.8 nm size range could enhance higher the efficacy of the conjugated-CDDP to Hep-F127 than that of single doses. Moreover, the considerable amount of dual-drug released from thermosensitive nanogels between different conditions (pH = 7.4 and pH = 5.5) in comparison to CDDP from Hep-F127 partially indicated the significantly anti-proliferative ability of Hep-F127/CDDP/Cur to the MCF-7 cell line. Remarkably, drug testing in a xenograft model elucidates the intricate synergism of co-delivery in suppressing tumor growth, which remedies some of the problems affecting in cancer chemotherapy.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Two new cycloartane glycosides, nervisides I–J, were isolated from Nervilia concolor whole plants. Their structures were unambiguously established by interpretation of their HRESIMS and 1D and 2D NMR data. These cycloartanes comprised a stereogenic center at C-24, the R configuration of which was assigned based on DFT-NMR calculations and the subsequent DP4 probability score. These compounds were tested for cytotoxicity against K562 and MCF-7 tumor cell lines, revealing mild cytotoxic activity.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...