ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-19
    Description: The purpose of this work was to study the depositional mechanisms and significance of the Longmaxi shale in the Sichuan Basin in southern China. Seven lithofacies were identified based on the detailed observation of outcrops and cores using petrographic and scanning electron microscope examination of thin sections and other data analyses: (1) laminated calcareous mudstone, (2) laminated carbonaceous mudstone, (3) laminated silty mudstone, (4) laminated claystone, (5) laminated siliceous shale, (6) siltstone, and (7) massive mudstone. The laminated mudstone and laminated claystone originated from suspension deposition, and siliceous shale is associated with ocean upwelling, whereas massive mudstone and siltstone were primarily deposited by turbidity currents. The depositional mechanisms have a great effect on the source rock and reservoir properties. Suspension deposition near oceanic upwelling zones can provide favorable conditions for the production and preservation of organic matter and are thus conducive to the formation of high-quality source rocks (total organic carbon content up to 5.4%). The reservoir storage spaces are primarily interlaminated fractures and organic pores with good physical reservoir properties (high porosity, permeability, and brittle mineral content). Turbidity currents may carry a large quantity of oxygen to the seafloor, resulting in the oxidation of organic matter, which is unfavorable for its preservation. The lithofacies formed by turbidity currents have relatively low total organic carbon contents (average: 〈1%). Structural fractures and intergranular pores are the primary storage spaces that are present in the reservoir. In summary, organic-rich shale and siliceous shale that was deposited from suspension near upwelling zones are key exploration targets for shale oil and gas. The widely distributed, multilayer, tight sandstone is important in the exploration for tight oil. A better understanding of the deposition mechanism and its effect on oil reservoirs may assist in identification of favorable areas for exploration.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-07
    Description: Shale oil and gas have been discovered in the lacustrine organic-rich Zhangjiatan Shale of the Upper Triassic Yanchang Formation, Ordos Basin, China. Core observations indicate abundant silty laminae in the producing shales. This study documents the stratigraphic distribution of silty laminae and their relationship with interlaminated clay laminae. The type, structure, and characteristics of pores and mineral composition of silty laminae were observed and analyzed through thin section and scanning electron microscopy, X-ray diffraction, low-pressure $${\mathrm{CO}}_{2}$$ and $${\mathrm{N}}_{2}$$ adsorption, mercury porosimetry, and helium pycnometry. Results from silty laminae are compared with those of clayey laminae. The frequency and thickness of silty laminae vary over a wide range. The thickness ranges from 0.2 to 4 mm and is 1.5 mm on average; the frequency ranges from 4 to 32 laminae/m and is 23 laminae/m on average. The thickness percentage of silty laminae in the measured segments ranges from 6% to 17%. Silty laminae consist of quartz, feldspar, mixed-layer montmorillonite, and chlorite. In comparison to clayey laminae, non-clay detrital grains are larger, quartz and feldspar are more common, and clay minerals are less abundant. Pores in silty laminae are primary interparticle, dissolutional, intercrystalline, and microfracture types. Mesopores (2–50 nm in diameter) and macropores (50 nm–1 μm) are common, whereas, micropores $$( 〈 2\hbox{ \hspace{0.17em}\hspace{0.17em} }\mathrm{nm})$$ are rare; the distribution of pore diameters is multimodal. However, microscopic pores with a diameter commonly smaller than 100 nm are common in clayey laminae. Thus, pore volume and surface area of micropores in silty laminae are less than those in the adjacent clayey laminae, and vice versa for meso- and macropores. The porosity of shales increases with the proportion of silty laminae in the shales. The silty laminae provide the storage space and flow conduit for oil and gas, and they play a significant role in the migration, accumulation, occurrence, and amount of gas in the shales.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-19
    Description: Studies suggest that nanometer-scale pores exist in organic matter as a result of thermal decomposition of kerogen. Depending on the host rock lithology, organic pores could be the primary storage for hydrocarbon accumulation in unconventional petroleum plays. Although various methods are publicly available, estimation of organic porosity remains a challenge because the procedures involve certain simplification or some implicit assumptions on the calculation of initial total organic carbon (TOC). In this study, we propose a revised method to address some of these issues. A model of estimating hydrocarbon expulsion efficiency is developed and incorporated into the calculation of initial TOC, thus producing an estimate of organic porosity with an improved mass balance. The method has been tested and compared with estimates using other methods based on a Rock-Eval data set in the literature. An application of the method to a large data set from the Upper Devonian Duvernay Formation petroleum system in the Western Canada Sedimentary Basin reveals that the modification has a significant effect on the estimated organic porosity. This study also indicates that organic porosity in the Duvernay Formation ranges greatly from none in immature intervals to 〉6% in highly mature and organic-rich shale intervals. Scanning electron microscope images of immature and mature organic-rich shale samples of the Duvernay Formation show a progressive increase in organic porosity with increasing thermal maturity, supporting the proposed model calculation. The presence of a large volume of organic porosity in mature shale intervals suggests a significant amount of hydrocarbon may be stored in the organic nanopores in the Duvernay Formation.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...