ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford Univ. Press  (2)
  • Akademia Kiado  (1)
  • Annual Reviews Inc.
  • 2015-2019  (3)
Collection
Years
Year
  • 1
    Publication Date: 2017-05-02
    Description: The pelagic dynamics of the cosmopolitan scyphozoan Aurelia sp. was investigated in three French Mediterranean lagoons, Thau, Berre and Bages-Sigean, which harbour resident populations. The annual cycles showed a common univoltine pattern in all lagoons where the presence of pelagic stages in the water column lasted ∼8 months. Field observations showed a release of ephyrae in winter time followed by pronounced growth between April and July, when individuals reached the largest sizes, before disappearing from the water column. Maximum abundance of ephyrae and medusae were registered in Thau. Medusae abundance attained a maximum of 331 ind 100 m-3 in Thau, 18 ind 100 m-3 in Berre and 7 ind 100 m-3 in Bages-Sigean lagoons. Temperature and zooplankton abundance appeared as leading factors of growth, where Bages-Sigean showed the population with higher growth rates (2.66 mm day-1) and maximum size (32 cm), followed by Thau (0.57-2.56 mm day-1; 22.4 cm) and Berre (1.57-2.22 mm day-1; 17 cm). The quantification of environmental windows used by the species showed wider ranges than previously reported in the Mediterranean Sea, which suggests a wide ecological plasticity of Aurelia spp. populations in north-western Mediterranean lagoons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Aurelia aurita (Linneaus, 1758) is a cosmopolitan scyphozoan, probably the most investigated jellyfish in temperate and highly productive coastal ecosystems. Despite a prominent top-down control in plankton food webs, a mechanistic understanding of A. aurita population dynamics and trophic interactions has been barely addressed. Here we develop a food web dynamic model to assess A. aurita role in the seasonal plankton dynamics of the Kiel Fjord, southwestern Baltic Sea. The model couples low trophic level dynamics, based on a classical Nutrient Phytoplankton Zooplankton Detritus (NPZD) model, to a stage-resolved copepod model (referencing Pseudocalanus sp.) and a jellyfish model (A. aurita ephyra and medusa) as consumers and predators, respectively. Simulations showed the relevance of high abundances of A. aurita, which appear related with warm winter temperatures, promoting a shift from a copepod-dominated food web to a ciliate and medusa dominated one. The model captured the intraspecific competition triggered by the medusae abundance and characterized by a negative relationship between population density and individual size/weight. Our results provide a mechanistic understanding of an emergent trait such as size shaping the food web functioning, driving predation rates and population dynamics of A. aurita, driving its sexual reproductive strategy at the end of the pelagic phase.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Anthropic activities impact ecosystems worldwide thus contributing to the rapid erosion of biodiversity. The failure of traditional strategies targeting single species highlighted ecosystems as the most suitable scale to plan biodiversity management. Network analysis represents an ideal tool to model interactions in ecosystems and centrality indices have been extensively applied to quantify the structural and functional importance of species in food webs. However, many network studies fail in deciphering the ecological mechanisms that lead some species to occupy the most central positions in food webs. To address this question, we built a high-resolution food web of the Gulf of California and quantified species position using 15 centrality indices and the trophic level. We then modelled the values of each index as a function of traits and other attributes (e.g., habitat). We found that body size and mobility are the best predictors of indices that characterize species importance at local, meso- and global scale, especially in presence of data accounting for energy direction. This result extends previous findings that illustrated how a restricted set of traitaxes can predict whether two species interact in food webs. In particular, we show that traits can also help understanding the way species are affected by and mediate indirect effects. The traits allow focusing on the processes that shape the food web, rather than providing case-specific indications as the taxonomy-based approach. We suggest that future network studies should consider the traits to explicitly identify the causal relationships that link anthropic impacts to role changes of species in food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...