ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (10)
  • Copernicus Publications (EGU)  (3)
  • AWI
  • Deutscher Wetterdienst
  • 2015-2019  (13)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Measurement Techniques, 9 (5). pp. 2409-2423.
    Publication Date: 2019-05-23
    Description: The satellite-derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in situ precipitation measurements from ship rain gauges and optical disdrometers over the open ocean by applying a statistical analysis for binary estimates. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the ERA-Interim times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the number of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, when regionally averaged over latitudinal belts, deviations between the observed mean precipitation rates and ERA-Interim exist. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern subtropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers, it can be concluded that both HOAPS and ERA-Interim are suitable for detecting the occurrence of solid precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 . pp. 4093-4114.
    Publication Date: 2020-02-06
    Description: This study aims to quantify how much of the extratropical Tropopause Inversion Layer (TIL) comes from the modulation by planetary and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context. Using gridded COSMIC GPS-RO temperature profiles from 2007–2013 we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method, and to quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid and high latitudes, for both Hemispheres and all seasons. The instantaneous modulation by planetary and synoptic-scale waves is almost entirely responsible for the TIL in mid-latitudes. This means that wave-mean flow interactions, inertia-gravity waves or the residual circulation are of minor importance in mid-latitudes. At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation. After many modelling studies that proposed different TIL enhancing mechanisms in the last decade, our study finally identifies which processes dominate the extratropical TIL strength and their relative contribution, by analyzing observations only. It remains to be determined, however, which roles the different planetary and synoptic-scale wave types play within the total extratropical wave modulation of the TIL; and what causes the observed amplification of extratropical waves near the tropopause.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 16 . pp. 11617-11633.
    Publication Date: 2019-05-23
    Description: The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia–gravity waves and hamper stratosphere–troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO). We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ∼ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis. We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20–25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics. To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia–gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bumke, Karl; König-Langlo, Gert; Kinzel, Julian; Schröder, Marc (2016): HOAPS and ERA-Interim precipitation over the sea: validation against shipboard in situ measurements. Atmospheric Measurement Techniques, 9(5), 2409-2423, https://doi.org/10.5194/amt-9-2409-2016
    Publication Date: 2023-01-13
    Description: The satellite derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in-situ precipitation measurements from ship rain gauges and optical disdrometers over the open-ocean by applying a statistical analysis for binary forecasts. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the forecast times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the numbers of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, regionally averaged over latitudinal belts, there are deviations between the observed mean precipitation rates and ERA-Interim. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern sub-tropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers it can be concluded that both HOAPS and ERA-Interim are suitable to detect the occurrence of solid precipitation.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bumke, Karl (2016): Validation of ERA-Interim Precipitation Estimates over the Baltic Sea. 7(6), 82, https://doi.org/10.3390/atmos7060082
    Publication Date: 2023-01-13
    Description: Rain rates measured onboard ships, merchant ships and research vessels, by ship rain gauges. Data are gained over the Baltic Sea area, measurement intervals are 8 min.
    Keywords: DATE/TIME; LATITUDE; LONGITUDE; Precipitation; Rain gauge
    Type: Dataset
    Format: text/tab-separated-values, 2014210 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Keywords: DATE/TIME; Number; Precipitation; Wind speed, relative
    Type: Dataset
    Format: text/tab-separated-values, 175715 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-13
    Keywords: DATE/TIME; Kiel Fjord; Kiel-Institute; Precipitation; Weather station/meteorological observation; WST
    Type: Dataset
    Format: text/tab-separated-values, 18881 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-13
    Keywords: DATE/TIME; LATITUDE; LONGITUDE; Precipitation
    Type: Dataset
    Format: text/tab-separated-values, 27881 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Keywords: DATE/TIME; DEPTH, water; HMS; Hydrometeorological station; Kiel_GEOMAR-Pier; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 5434 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-05
    Description: PREFCLIM is a mixed-layer climatology for the Eastern Tropical Atlantic. The climatology contains a high-resolution (0.25 degrees) monthly-mean mixed-layer hydrography (mixed-layer depth, temperature, salinity), and coarse-resolution (2.5 degrees) estimates of the mixed-layer heat and salt balance, as well as of near-surface velocities and of air-sea fluxes. All existing hydrographic products of the region were hampered by the sparse availability of near-shore data owned by the West-African coastal countries, which could, however, be included in the new climatology.
    Keywords: File content; File format; File name; File size; Model; PREFCLIM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...