ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (19)
  • AGU (American Geophysical Union)  (1)
  • GeoScienceWorld
  • Paleontological Society
  • 2015-2019  (20)
  • 1
    Publication Date: 2019-12-20
    Description: The state of a population of planktic foraminifers at a certain time reflects multiple processes in the upper ocean, including environmental conditions to which the population was exposed during its growth, the age of the cohorts, and spatiotemporal patchiness. We carried out depth-stratified (0–60, 60–100 m) replicated sampling off Puerto Rico in autumn 2012, revisiting three stations previously sampled in autumn 1994 and spring 1995, in order to analyze seasonal and interannual variability of planktic foraminifers and the stable isotopic composition of their tests. The merged dataset from all three sampling campaigns allows us to assess short- and long-term changes in foraminiferal population dynamics and the spatial assemblage coherency along the shelf edge. All three sample series cover more than 2 weeks during either spring (1995) or autumn (1994, 2012) and include the time of the full moon when reproduction of some surface-dwelling planktic foraminifers has been postulated to take place. Our analyses indicate that interannual variability affected the faunal composition, and both autumn assemblages were characterized by oligotrophic tropical species, dominated by Trilobatus sacculifer and Globigerinoides ruber (white and pink variety). However, G. ruber (white) had a higher abundance in 1994 (37 %) than in 2012 (3.5 %), which may be partially due to increasing sea surface temperatures since the 1990s. Between 60 and 100 m water depth, a different faunal composition with a specific stable oxygen isotope signature provides evidence for the presence of the Subtropical Underwater at the sampling site. Measurements on T. sacculifer sampled in autumn 2012 revealed that test size, calcification and incidence of sac-like chambers continued to increase after full moon, and thus no relation to the synodic lunar reproduction cycle was recognized. During autumn 2012, outer bands of hurricane Sandy passed the Greater Antilles and likely affected the foraminifers. Lower standing stocks of living planktic foraminifers and lower stable carbon isotope values from individuals collected in the mixed layer likely indicate the response to increased rainfall and turbidity in the wake of the hurricane.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-24
    Description: Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100 m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to 〉 50 % of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula appear to descend in the water column towards the summer, whereas populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance than the periodic models. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-06
    Description: Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA) in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-06
    Description: The composition of planktonic foraminiferal (PF) calcite is routinely used to reconstruct climate variability. However, PF ecology leaves a large imprint on the proxy signal: seasonal and vertical habitats of PF species vary spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience and it is not unlikely that changes in depth habitat also result from such habitat tracking. While this behaviour could lead to an underestimation of spatial or temporal trends as well as of variability in proxy records, most palaeoceanographic studies are (implicitly) based on the assumption of a constant habitat. Up to now, the effect of habitat tracking on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise this effect on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by −0.1 ‰ (equivalent to 0.4 °C) per °C), thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that given an observation-based model parametrisation calcification depth increases with temperature in all species and sensitivity analysis suggests that a temperature-related seasonal habitat adjustment is essential to explain the observed isotope signal. Habitat tracking can thus lead to a significant reduction in the amplitude of recorded environmental change. However, we show that this behaviour is predictable. This allows accounting for habitat tracking, enabling more meaningful reconstructions and improved data–model comparison.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-19
    Description: Species of planktonic foraminifera exhibit specific seasonal production patterns and different preferred vertical habitats. The seasonal and vertical habitats are not constant throughout the range of the species and changes therein must be considered when interpreting paleoceanographic reconstructions based on fossil foraminifera. However, detecting the effect of changing vertical and seasonal habitat on foraminifera proxies requires independent evidence for either habitat or climate change. In practice, this renders accounting for habitat tracking from fossil evidence almost impossible. An alternative method that could reduce the bias in paleoceanographic reconstructions is to predict species-specific habitat shifts under climate change using an ecosystem modeling approach. To this end, we present a new version of a planktonic foraminifera model, PLAFOM2.0, embedded into the ocean component of the Community Earth System Model version 1.2.2. This model predicts monthly global concentrations of the planktonic foraminiferal species Neogloboquadrina pachyderma, N. incompta, Globigerina bulloides, Globigerinoides ruber (white), and Trilobatus sacculifer throughout the world ocean, resolved in 24 vertical layers to 250 m of depth. The resolution along the vertical dimension has been implemented by applying the previously used spatial parameterization of carbon biomass as a function of temperature, light, nutrition, and competition on depth-resolved parameter fields. This approach alone results in the emergence of species-specific vertical habitats, which are spatially and temporally variable. Although an explicit parameterization of the vertical dimension has not been carried out, the seasonal and vertical distribution patterns predicted by the model are in good agreement with sediment trap data and plankton tow observations. In the simulation, the colder-water species N. pachyderma, N. incompta, and G. bulloides show a pronounced seasonal cycle in their depth habitat in the polar and subpolar regions, which appears to be controlled by food availability. During the warm season, these species preferably occur in the subsurface (below 50 m of water depth), while towards the cold season they ascend through the water column and are found closer to the sea surface. The warm-water species G. ruber (white) and T. sacculifer exhibit a less variable shallow depth habitat with highest carbon biomass concentrations within the top 40 m of the water column. Nevertheless, even these species show vertical habitat variability and their seasonal occurrence outside the tropics is limited to the warm surface layer that develops at the end of the warm season. The emergence in PLAFOM2.0 of species-specific vertical habitats, which are consistent with observations, indicates that the population dynamics of planktonic foraminifera species may be driven by the same factors in time, space, and with depth, in which case the model can provide a reliable and robust tool to aid the interpretation of proxy records.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-04
    Description: Applications of planktonic foraminifera in Quaternary palaeoceanographic and palaeobiological studies require consistency in species identification. Yet the degree of taxonomic consistency among the practitioners and the effects of any potential deviations on community structure metrics have never been quantitatively assessed. Here we present the results of an experiment in taxonomic consistency involving 21 researchers representing a range of experience and taxonomic schools from around the world. Participants were asked to identify the same two sets of 300 specimens from a modern subtropical North Atlantic sample, one sieved at 〉125 µm and one at 〉 150 µm. The identification was carried out either on actual specimens (slide test) or their digital images (digital test). The specimens were fixed so the identifications could be directly compared. In all tests, only between one-quarter and one-eighth of the specimens achieved absolute agreement. Therefore, the identifications across the participants were used to determine a consensus ID for each specimen. Since no strict consensus (〉50 % agreement) could be achieved for 20–30 % of the specimens, we used a “soft consensus” based on the most common identification. The average percentage agreement relative to the consensus of the slide test was 77 % in the 〉150 µm and 69 % in the 〉125 µm test. These values were 7 % lower for the digital analyses. We find that taxonomic consistency is enhanced when researchers have been trained within a taxonomic school and when they regularly perform community analyses. There is an almost negligible effect of taxonomic inconsistency on sea surface temperature estimates based on transfer function conversion of the census counts, indicating the temperature signal in foraminiferal assemblages is correctly represented even if only two-thirds of the assemblage is consistently identified. The same does not apply to measures of diversity and community structure within the assemblage, and here we advise caution in using compound datasets for such studies. The decrease in the level of consistency when specimens are identified from digital images is significant and species-specific, with implications for the development of training sets for automated identification systems.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Stable oxygen isotopes (δ18O) of planktonic foraminifera are one of the most used tools to reconstruct environmental conditions of the water column. Since different species live and calcify at different depths in the water column, the δ18O of sedimentary foraminifera reflects to a large degree the vertical habitat and interspecies δ18O differences and can thus potentially provide information on the vertical structure of the water column. However, to fully unlock the potential of foraminifera as recorders of past surface water properties, it is necessary to understand how and under what conditions the environmental signal is incorporated into the calcite shells of individual species. Deep-dwelling species play a particularly important role in this context since their calcification depth reaches below the surface mixed layer. Here we report δ18O measurements made on four deep-dwelling Globorotalia species collected with stratified plankton tows in the eastern North Atlantic. Size and crust effects on the δ18O signal were evaluated showing that a larger size increases the δ18O of G. inflata and G. hirsuta, and a crust effect is reflected in a higher δ18O signal in G. truncatulinoides. The great majority of the δ18O values can be explained without invoking disequilibrium calcification. When interpreted in this way the data imply depth-integrated calcification with progressive addition of calcite with depth to about 300 m for G. inflata and to about 500 m for G. hirsuta. In G. scitula, despite a strong subsurface maximum in abundance, the vertical δ18O profile is flat and appears dominated by a surface layer signal. In G. truncatulinoides, the δ18O profile follows equilibrium for each depth, implying a constant habitat during growth at each depth layer. The δ18O values are more consistent with the predictions of the Shackleton (1974) palaeotemperature equation, except in G. scitula which shows values more consistent with the Kim and O'Neil (1997) prediction. In all cases, we observe a difference between the level where most of the specimens were present and the depth where most of their shell appears to calcify.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-12
    Description: Neogloboquadrina pachyderma is the dominant planktonic foraminifera species in the polar regions. In the northern high-latitude ocean, it makes up more than 90 % of the total assemblages, making it the dominant pelagic calcifier and carrier of paleoceanographic proxies. To assess the reaction of this species to a future shaped by climate change and to be able to interpret the paleoecological signal contained in its shells, its depth habitat must be known. Previous work showed that N. pachyderma in the northern polar regions has a highly variable depth habitat, ranging from the surface mixed layer to several hundreds of metres below the surface, and the origin of this variability remained unclear. In order to investigate the factors controlling the depth habitat of N. pachyderma, we compiled new and existing population density profiles from 104 stratified plankton tow hauls collected in the Arctic and the North Atlantic oceans during 14 oceanographic expeditions. For each vertical profile, the depth habitat (DH) was calculated as the abundance-weighted mean depth of occurrence. We then tested to what degree environmental factors (mixed-layer depth, sea surface temperature, sea surface salinity, chlorophyll a concentration, and sea ice concentration) and ecological factors (synchronized reproduction and daily vertical migration) can predict the observed DH variability and compared the observed DH behaviour with simulations by a numerical model predicting planktonic foraminifera distribution. Our data show that the DH of N. pachyderma varies between 25 and 280 m (average ∼100 m). In contrast with the model simulations, which indicate that DH is associated with the depth of chlorophyll maximum, our analysis indicates that the presence of sea ice together with the concentration of chlorophyll a at the surface have the strongest influence on the vertical habitat of this species. N. pachyderma occurs deeper when sea ice and chlorophyll concentrations are low, suggesting a time-transgressive response to the evolution of (near) surface conditions during the annual cycle. Since only surface parameters appear to affect the vertical habitat of N. pachyderma, light or light-dependant processes might influence the ecology of this species. Our results can be used to improve predictions of the response of the species to climate change and thus to refine paleoclimatic reconstructions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-05
    Description: The composition of planktonic foraminiferal (PF) calcite is routinely used to reconstruct climate change and variability. However, PF ecology leaves a large imprint on the proxy signal. The seasonal and vertical habitat of planktonic foraminifera (PF) species varies spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience. While such habitat tracking could lead to an underestimation of spatial or temporal trends and variability in proxy records, most paleoceanographic studies are based on the assumption of a constant habitat. Although the controls on depth habitat variability are less well constrained, it is not unlikely that habitat tracking also affects PF depth habitat. Despite the implications, the effect of this behaviour on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise the effect of habitat tracking on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species, which we compare to predicted δ18O. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by −0.1 ‰ (or 0.4°C) per °C), thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We then use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that in all species calcification depth increases with temperature. Consistent with hydrographic conditions, vertical habitat adjustment is dominant in tropical species, whereas cold-water species mainly changes their seasonality when tracking their "optimum" habitat. Assumptions of constant PF depth or seasonal habitat made when interpreting proxy records are thus invalid. The approach outlined here can be used to account for these effects, enabling more accurate reconstructions and improved data-model comparison.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-05
    Description: Photosymbiosis has played a key role in the diversification of foraminifera and their carbonate production throughout geologic history. However, identification of photosymbiosis in extinct taxa remains challenging, and even among the extant species the occurrence and functional relevance of photosymbiosis remain poorly constrained. Here, we investigate photosymbiosis in living planktonic foraminifera by measuring active chlorophyll fluorescence with fast repetition rate fluorometry. This method provides unequivocal evidence for the presence of photosynthetic capacity in individual foraminifera, and it allows us to characterize multiple features of symbiont photosynthesis including chlorophyll a (Chl a) content, potential photosynthetic activity (Fv∕Fm), and light-absorption efficiency (σPSII). To obtain robust evidence for the occurrence and importance of photosymbiosis in modern planktonic foraminifera, we conducted measurements on 1266 individuals from 30 species of the families Globigerinidae, Hastigerinidae, Globorotaliidae, and Candeinidae. Among the studied species, 19 were recognized as symbiotic and 11 as non-symbiotic. Of these, six species were newly confirmed as symbiotic and five as non-symbiotic. Photosymbiotic species have been identified in all families except the Hastigerinidae. A significant positive correlation between test size and Chl a content, found in 16 species, is interpreted as symbiont abundance scaled to the growth of the host and is consistent with persistent possession of symbionts through the lifetime of the foraminifera. The remaining three symbiont-bearing species did not show such a relationship, and their Fv∕Fm values were comparatively low, indicating that their symbionts do not grow once acquired from the environment. The objectively quantified photosymbiotic characteristics have been used to design a metric of photosymbiosis, which allows the studied species to be classified along a gradient of photosynthetic activity, providing a framework for future ecological and physiological investigations of planktonic foraminifera.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...